Piterbarg theorems for chi-processes with trend

被引:27
|
作者
Hashorva, Enkelejd [1 ]
Ji, Lanpeng [1 ]
机构
[1] Univ Lausanne, Fac Business & Econ HEC Lausanne, UNIL Dorigny, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Gaussian random fields; Piterbarg theorem for chi-process; Pickands constant; generalized Piterbarg constant; Piterbarg inequality; GAUSSIAN-PROCESSES; EXTREMAL THEORY; X2-PROCESS;
D O I
10.1007/s10687-014-0201-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let chi(n)(t) = (Sigma(n)(i=1) X-i(2)(t))(1/2), t >= 0 be a chi-process with n degrees of freedom where X (i) 's are independent copies of some generic centered Gaussian process X. This paper derives the exact asymptotic behaviour of P{sup(t is an element of[0,T]) (chi(n)(t) - g(t) > u} as u -> infinity, where T is a given positive constant, and g(a <...) is some non-negative bounded measurable function. The case g(t)equivalent to 0 has been investigated in numerous contributions by V.I. Piterbarg. Our novel asymptotic results, for both stationary and non-stationary X, are referred to as Piterbarg theorems for chi-processes with trend.
引用
下载
收藏
页码:37 / 64
页数:28
相关论文
共 50 条
  • [21] Bisimulation lattice of chi processes
    Fu, YX
    ADVANCES IN COMPUTING SCIENCE-ASIAN' 98, 1998, 1538 : 245 - 262
  • [22] Large deviation theorems for the chi-square test
    Pavlov, AV
    RUSSIAN MATHEMATICAL SURVEYS, 1996, 51 (01) : 158 - 159
  • [23] Introduction to chi((2)) processes
    Hanna, DC
    QUANTUM AND SEMICLASSICAL OPTICS, 1997, 9 (02): : 131 - 138
  • [24] A trend of Tai Chi in osteoporosis research: A bibliometric analysis
    Liang, Libing
    Zhang, Mingyue
    Li, Kunpeng
    Hou, Jianmiao
    Wu, Caiqin
    COMPLEMENTARY THERAPIES IN MEDICINE, 2024, 86
  • [25] Innovative polygon trend analysis for salinity trend detection in Ho Chi Minh City, Vietnam
    Phan Thi Ha
    Pham Quoc Khanh
    Le Hoang Tu
    Nguyen Thi Huyen
    Vo Ngoc Quynh Tram
    Nguyen Duy Liem
    Nguyen Kim Loi
    Environmental Earth Sciences, 2025, 84 (3)
  • [26] The Supremum of Chi-Square Processes
    Charles-Elie Rabier
    Alan Genz
    Methodology and Computing in Applied Probability, 2014, 16 : 715 - 729
  • [27] The Supremum of Chi-Square Processes
    Rabier, Charles-Elie
    Genz, Alan
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2014, 16 (03) : 715 - 729
  • [28] Uniformity of bisimulation equivalences of Chi processes
    Lin, M. (fu-yx@cs.sjtu.edu.cn), 1793, Chinese Academy of Sciences (12):
  • [29] CHI-SQUARE TREND ANALYSIS IN ANTIGEN SHARING STUDIES
    HOFF, C
    TISSUE ANTIGENS, 1985, 26 (03): : 212 - 213
  • [30] POMERANCHUK THEOREMS FOR PRODUCTION PROCESSES
    MICKENS, RE
    LETTERE AL NUOVO CIMENTO, 1973, 8 (04): : 256 - 258