Piterbarg theorems for chi-processes with trend

被引:27
|
作者
Hashorva, Enkelejd [1 ]
Ji, Lanpeng [1 ]
机构
[1] Univ Lausanne, Fac Business & Econ HEC Lausanne, UNIL Dorigny, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Gaussian random fields; Piterbarg theorem for chi-process; Pickands constant; generalized Piterbarg constant; Piterbarg inequality; GAUSSIAN-PROCESSES; EXTREMAL THEORY; X2-PROCESS;
D O I
10.1007/s10687-014-0201-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let chi(n)(t) = (Sigma(n)(i=1) X-i(2)(t))(1/2), t >= 0 be a chi-process with n degrees of freedom where X (i) 's are independent copies of some generic centered Gaussian process X. This paper derives the exact asymptotic behaviour of P{sup(t is an element of[0,T]) (chi(n)(t) - g(t) > u} as u -> infinity, where T is a given positive constant, and g(a <...) is some non-negative bounded measurable function. The case g(t)equivalent to 0 has been investigated in numerous contributions by V.I. Piterbarg. Our novel asymptotic results, for both stationary and non-stationary X, are referred to as Piterbarg theorems for chi-processes with trend.
引用
收藏
页码:37 / 64
页数:28
相关论文
共 50 条
  • [1] Piterbarg theorems for chi-processes with trend
    Enkelejd Hashorva
    Lanpeng Ji
    [J]. Extremes, 2015, 18 : 37 - 64
  • [2] On maxima of chi-processes over threshold dependent grids
    Ling, Chengxiu
    Tan, Zhongquan
    [J]. STATISTICS, 2016, 50 (03) : 579 - 595
  • [3] Limit laws for the maxima of stationary chi-processes under random index
    Zhongquan Tan
    Changchun Wu
    [J]. TEST, 2014, 23 : 769 - 786
  • [4] The extremes of dependent chi-processes attracted by the Brown-Resnick process
    Sun, Junjie
    Tan, Zhongquan
    [J]. ACTA MATHEMATICA SCIENTIA, 2024, 44 (02) : 686 - 701
  • [5] The extremes of dependent chi-processes attracted by the Brown-Resnick process
    Junjie Sun
    Zhongquan Tan
    [J]. Acta Mathematica Scientia, 2024, 44 : 686 - 701
  • [6] Limit laws for the maxima of stationary chi-processes under random index
    Tan, Zhongquan
    Wu, Changchun
    [J]. TEST, 2014, 23 (04) : 769 - 786
  • [7] THE EXTREMES OF DEPENDENT CHI-PROCESSES ATTRACTED BY THE BROWN-RESNICK PROCESS
    孙俊杰
    谭中权
    [J]. Acta Mathematica Scientia, 2024, 44 (02) : 686 - 701
  • [8] EXTREMES OF CHI-SQUARE PROCESSES WITH TREND
    Liu, Peng
    Ji, Lanpeng
    [J]. PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2016, 36 (01): : 1 - 20
  • [9] EXTREMES AND LIMIT THEOREMS FOR DIFFERENCE OF CHI-TYPE PROCESSES
    Albin, Patrik
    Hashorva, Enkelejd
    Ji, Lanpeng
    Ling, Chengxiu
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2016, 20 : 349 - 366
  • [10] Extremes of locally stationary chi-square processes with trend
    Liu, Peng
    Ji, Lanpeng
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (02) : 497 - 525