Two new eigenvalue localization sets for tensors and theirs applications

被引:12
|
作者
Zhao, Jianxing [1 ]
Sang, Caili [1 ]
机构
[1] Guizhou Minzu Univ, Coll Data Sci & Informat Engn, Guiyang 550025, Guizhou, Peoples R China
来源
OPEN MATHEMATICS | 2017年 / 15卷
基金
中国国家自然科学基金;
关键词
Nonnegative tensors; Tensor eigenvalue; Localization set; Positive definite; Spectral radius; NONNEGATIVE TENSORS; INCLUSION SET; BOUNDS;
D O I
10.1515/math-2017-0106
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new eigenvalue localization set for tensors is given and proved to be tighter than those presented by Qi (J. Symbolic Comput., 2005, 40, 1302-1324) and Li et al. (Numer. Linear Algebra Appl., 2014, 21, 39-50). As an application, a weaker checkable sufficient condition for the positive (semi-) definiteness of an even-order real symmetric tensor is obtained. Meanwhile, an S-type E-eigenvalue localization set for tensors is given and proved to be tighter than that presented by Wang et al. (Discrete Cont. Dyn.-B, 2017, 22(1), 187-198). As an application, an S-type upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors is obtained. Finally, numerical examples are given to verify the theoretical results.
引用
收藏
页码:1267 / 1276
页数:10
相关论文
共 50 条
  • [11] Pseudospectra localization sets of tensors with applications
    He, Jun
    Li, Chaoqian
    Wei, Yimin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 369
  • [12] Z-Eigenvalue Localization Sets for Tensors and the Applications in Rank-One Approximation and Quantum Entanglement
    Juan Zhang
    Xuechan Chen
    Acta Applicandae Mathematicae, 2023, 186
  • [13] Z-Eigenvalue Localization Sets for Tensors and the Applications in Rank-One Approximation and Quantum Entanglement
    Zhang, Juan
    Chen, Xuechan
    ACTA APPLICANDAE MATHEMATICAE, 2023, 186 (01)
  • [14] E-eigenvalue Localization Sets for Fourth-Order Tensors
    Jianxing Zhao
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 1685 - 1707
  • [15] E-eigenvalue Localization Sets for Fourth-Order Tensors
    Zhao, Jianxing
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1685 - 1707
  • [16] A new Z-eigenvalue localization set for tensors
    Jianxing Zhao
    Journal of Inequalities and Applications, 2017
  • [17] A new Z-eigenvalue localization set for tensors
    Zhao, Jianxing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [18] An eigenvalue localization set for tensors with applications to determine the positive (semi-)definiteness of tensors
    Li, Chaoqian
    Li, Yaotang
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (04): : 587 - 601
  • [19] New Brualdi-type eigenvalue inclusion sets for tensors
    Yao, Hongmei
    Li, Zhen
    Chen, Lixiang
    Bu, Changjiang
    Yao, Hongmei (hongmeiyao@163.com), 1600, Elsevier Inc. (614): : 343 - 355
  • [20] New Brualdi-type eigenvalue inclusion sets for tensors
    Yao, Hongmei
    Li, Zhen
    Chen, Lixiang
    Bu, Changjiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 614 : 343 - 355