Simulation and Fabrication of Large-Area 3D Nanostructures

被引:0
|
作者
Bogart, K. H. A. [1 ]
El-kady, I. [1 ]
Grubbs, R. K. [1 ]
Rahimian, K. [1 ]
Sanchez, A. M. [1 ]
Ellis, A. R. [1 ]
Wiwi, M. [1 ]
McCormick, F. B. [1 ]
Shir, D. J. -L.
Rogers, J. A.
机构
[1] Sandia Natl Labs, Livermore, CA 94550 USA
关键词
nanostructure; lithography; quasicrystal; photonic; model;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Three-dimensional (3D) nano-structures are vital for emerging technologies such as photonics, sensors, fuel cells, catalyst supports, and data storage. The Proximity-field nanoPatterning(1) method generates complex 3D nanostructures using a single exposure through an elastomeric "phase mask" patterned in x, y, and z, and a single development cycle. We developed a model that predicts the phase mask required to generate a specific desired nanostructure. We have compared this inverse model with experimental 3D structures to test the validity of the simulation. We have transferred the PnP fabrication process to a class-10 commercial cleanroom and scaled-up the processed area to >2000mm(2), tested photopolymer additives designed to reduce resist shrinkage, incorporated atomic layer deposition (ALD) to coat the 3D patterned resist with metals/metal-oxides improve structure robustness, and generated quasi-crystal patterned 3D nanostructures.
引用
收藏
页码:624 / 627
页数:4
相关论文
共 50 条
  • [41] Fabrication of large-area periodic nanostructures using two-mirror laser interference lithography
    Jongseok Kim
    Il Gyu Jeong
    Sang Ho Lee
    Kyung Tae Kang
    Sung Ho Lee
    Electronic Materials Letters, 2013, 9 : 879 - 882
  • [42] Accurately prepared the large-area and efficiently 3D electrodes for overall seawater splitting
    Huang, Guoqing
    Wang, Yuqin
    Hao, Weiju
    Lu, Weiyi
    Wang, Yiming
    Huang, Zijun
    Fan, Jinchen
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 973
  • [43] 3D Multifunctional Composites Based on Large-Area Stretchable Circuit with Thermoforming Technology
    Yang, Yang
    Vervust, Thomas
    Dunphy, Sheila
    Van Put, Steven
    Vandecasteele, Bjorn
    Dhaenens, Kristof
    Degrendele, Lieven
    Mader, Lothar
    De Vriese, Linde
    Martens, Tom
    Kaufmann, Markus
    Sekitani, Tsuyoshi
    Vanfleteren, Jan
    ADVANCED ELECTRONIC MATERIALS, 2018, 4 (08):
  • [44] Progress on large-area polarization grating fabrication
    Miskiewicz, Matthew N.
    Kim, Jihwan
    Li, Yanming
    Komanduri, Ravi K.
    Escuti, Michael J.
    ACQUISITION, TRACKING, POINTING, AND LASER SYSTEMS TECHNOLOGIES XXVI, 2012, 8395
  • [45] Large-area YBCO films for device fabrication
    Tian, YJ
    Linzen, S
    Schmidl, F
    Cihar, R
    Seidel, P
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 1998, 11 (01): : 59 - 62
  • [46] Fabrication of large-area nickel nanobump arrays
    Chen, X.
    Wei, X.
    Jiang, K.
    MICROELECTRONIC ENGINEERING, 2009, 86 (4-6) : 871 - 873
  • [47] The design and implemention of a large area terrain 3D simulation system
    Xu W.-B.
    Li L.
    Zhou H.-X.
    Huang J.-X.
    Huang B.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2011, 40 (03): : 418 - 423
  • [48] Fabrication of 3D Micro and Nanostructures for Photonic Applications
    Cristea, D.
    Obreja, P.
    Dinescu, A.
    Konstantinidis, G.
    Rebigan, R.
    Kusko, C.
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON MULTI-MATERIAL MICRO MANUFACTURE (4M 2010), 2011, : 263 - 266
  • [49] Laser-assisted replication of large-area nanostructures
    Nagato, Keisuke
    Takahashi, Ken
    Sato, Toshimi
    Choi, Junho
    Hamaguchi, Tetsuya
    Nakao, Masayuki
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2014, 214 (11) : 2444 - 2449
  • [50] Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing
    Chanda, Debashis
    Shigeta, Kazuki
    Gupta, Sidhartha
    Cain, Tyler
    Carlson, Andrew
    Mihi, Agustin
    Baca, Alfred J.
    Bogart, Gregory R.
    Braun, Paul
    Rogers, John A.
    NATURE NANOTECHNOLOGY, 2011, 6 (07) : 402 - 407