A leave-one-out cross-validation SAS macro for the identification of markers associated with survival

被引:44
|
作者
Rushing, Christel [1 ,2 ]
Bulusu, Anuradha [1 ,2 ]
Hurwitz, Herbert I. [3 ]
Nixon, Andrew B. [3 ]
Pang, Herbert [1 ,2 ,4 ]
机构
[1] Duke Univ, Sch Med, Dept Biostat & Bioinformat, Durham, NC USA
[2] Duke Univ, Sch Med, Duke Canc Biostat, Durham, NC USA
[3] Duke Univ, Sch Med, Dept Med, Durham, NC 27706 USA
[4] Li Ka Shing Fac Med, Sch Publ Hlth, Pok Fu Lam, Hong Kong, Peoples R China
基金
美国国家卫生研究院;
关键词
Clinical trials; Cross-validation; Prognostic markers; SAS macro; Score selection; Survival analysis;
D O I
10.1016/j.compbiomed.2014.11.015
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A proper internal validation is necessary for the development of a reliable and reproducible prognostic model for external validation. Variable selection is an important step for building prognostic models. However, not many existing approaches couple the ability to specify the number of covariates in the model with a cross-validation algorithm. We describe a user-friendly SAS macro that implements a score selection method and a leave-one-out cross-validation approach. We discuss the method and applications behind this algorithm, as well as details of the SAS macro. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:123 / 129
页数:7
相关论文
共 50 条
  • [21] Weighted Leave-One-Out Cross Validation
    Pronzato, Luc
    Rendas, Maria-Joao
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2024, 12 (04): : 1213 - 1239
  • [22] Ensemble Kalman Filter Regularization Using Leave-One-Out Data Cross-Validation
    Rayo, Lautaro
    Hoteit, Ibrahim
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1247 - 1250
  • [23] Algorithmic stability and sanity-check bounds for leave-one-out cross-validation
    Kearns, M
    Ron, D
    NEURAL COMPUTATION, 1999, 11 (06) : 1427 - 1453
  • [24] Design of Incremental Echo State Network Using Leave-One-Out Cross-Validation
    Yang, Cuili
    Zhu, Xinxin
    Ahmad, Zohaib
    Wang, Lei
    Qiao, Junfei
    IEEE ACCESS, 2018, 6 : 74874 - 74884
  • [25] Enhanced Kriging leave-one-out cross-validation in improving model estimation and optimization
    Pang, Yong
    Wang, Yitang
    Lai, Xiaonan
    Zhang, Shuai
    Liang, Pengwei
    Song, Xueguan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 414
  • [26] Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
    Vehtari, Aki
    Gelman, Andrew
    Gabry, Jonah
    STATISTICS AND COMPUTING, 2017, 27 (05) : 1413 - 1432
  • [27] Robust Leave-One-Out Cross-Validation for High-Dimensional Bayesian Models
    Silva, Luca Alessandro
    Zanella, Giacomo
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (547) : 2369 - 2381
  • [28] Spatial leave-one-out cross-validation for variable selection in the presence of spatial autocorrelation
    Le Rest, Kevin
    Pinaud, David
    Monestiez, Pascal
    Chadoeuf, Joel
    Bretagnolle, Vincent
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2014, 23 (07): : 811 - 820
  • [29] Honest leave-one-out cross-validation for estimating post-tuning generalization error
    Wang, Boxiang
    Zou, Hui
    STAT, 2021, 10 (01):
  • [30] Optimizing Sparse Kernel Ridge Regression Hyperparameters Based on Leave-One-Out Cross-Validation
    Karasuyama, Masayuki
    Nakano, Ryohei
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 3463 - 3468