Validation of a 3D computational fluid-structure interaction model simulating flow through an elastic aperture

被引:19
|
作者
Quaini, A. [1 ]
Canic, S. [1 ]
Glowinski, R. [1 ]
Igo, S. [2 ]
Hartley, C. J. [3 ]
Zoghbi, W. [2 ]
Little, S. [2 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
[2] Methodist DeBakey Heart & Vasc Ctr, Dept Cardiol, Houston, TX USA
[3] Baylor Coll Med, Dept Med, Houston, TX 77030 USA
基金
美国国家科学基金会;
关键词
Fluid-structure interaction; Mitral valve regurgitation; Echocardiography; Computational fluid dynamics; Circulatory flow loop; FICTITIOUS DOMAIN METHOD; MECHANICAL HEART-VALVE; SPACE-TIME PROCEDURE; BLOOD-FLOW; MOVING BOUNDARIES; AORTIC-VALVE; INTERFACES; ARTERIES; REGURGITATION; FORMULATION;
D O I
10.1016/j.jbiomech.2011.10.020
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:310 / 318
页数:9
相关论文
共 50 条
  • [21] Absorbing boundary conditions for a 3D non-Newtonian fluid-structure interaction model for blood flow in arteries
    Janela, Joao
    Moura, Alexandra
    Sequeira, Adelia
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2010, 48 (11) : 1332 - 1349
  • [22] A computational fluid-structure interaction model of the blood flow in the healthy and varicose saphenous vein
    Razaghi, Reza
    Karimi, Alireza
    Rahmani, Shahrokh
    Navidbakhsh, Mahdi
    VASCULAR, 2016, 24 (03) : 254 - 263
  • [23] Existence of a weak solution to the fluid-structure interaction problem in 3D
    Trifunovic, Srdan
    Wang, Ya-Guang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (04) : 1495 - 1531
  • [24] 3D fluid-structure interaction with fracturing: A new method with applications
    Dalla Barba, Federico
    Zaccariotto, Mirco
    Galvanetto, Ugo
    Picano, Francesco
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 398
  • [25] On the stability of the coupling of 3d and 1d fluid-structure interaction models for blood flow simulations
    Formaggia, Luca
    Moura, Alexandra
    Nobile, Fabio
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2007, 41 (04): : 743 - 769
  • [26] LONGITUDINAL DISPLACEMENT IN VISCOELASTIC ARTERIES: A NOVEL FLUID-STRUCTURE INTERACTION COMPUTATIONAL MODEL, AND EXPERIMENTAL VALIDATION
    Bukac, Martina
    Canic, Suncica
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2013, 10 (02) : 295 - 318
  • [27] Fluid-structure interaction: analysis of a 3-D compressible model
    Flori, F
    Orenga, P
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (06): : 753 - 777
  • [28] A parallel 3D computational method for fluid-structure interactions in parachute systems
    Kalro, V
    Tezduyar, TE
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (3-4) : 321 - 332
  • [29] Fluid-structure interaction and structural analyses using a comprehensive mitral valve model with 3D chordal structure
    Toma, Milan
    Einstein, Daniel R.
    Bloodworth, Charles H.
    Cochran, Richard P.
    Yoganathan, Ajit P.
    Kunzelman, Karyn S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2017, 33 (04)
  • [30] Validation of a new fluid-structure interaction framework for non-linear instabilities of 3D aerodynamic configurations
    Cinquegrana, Davide
    Vitagliano, Pier Luigi
    JOURNAL OF FLUIDS AND STRUCTURES, 2021, 103