CONVOLUTIONS OF POLYNOMIAL KERNELS

被引:0
|
作者
Zelinka, Jiri [1 ]
机构
[1] Masaryk Univ, Fac Sci, Dept Math & Stat, Kotlarska 2, CS-61137 Brno, Czech Republic
关键词
kernel estimate of density; convolution;
D O I
10.1515/ms-2015-0176
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kernel estimates are an integral part of non-parametric statistics. Convolutions of the kernels can be found in some expressions describing properties of kernel estimates. This paper presents the exact construction of convolutions of polynomial kernels and their properties. (C) 2016 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:745 / 756
页数:12
相关论文
共 50 条
  • [21] Additive matrix convolutions of Polya ensembles and polynomial ensembles
    Kieburg, Mario
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2020, 9 (04)
  • [22] IMPROVED FAST POLYNOMIAL TRANSFORM ALGORITHM FOR CYCLIC CONVOLUTIONS
    LOH, AM
    SIU, WC
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1995, 14 (05) : 603 - 614
  • [23] Improved fast polynomial transform algorithm for cyclic convolutions
    Loh, Albert Ming
    Siu, Wan-Chi
    Circuits, Systems, and Signal Processing, 14 (05):
  • [24] Spherical Random Features for Polynomial Kernels
    Pennington, Jeffrey
    Yu, Felix X.
    Kumar, Sanjiv
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [25] Polynomial summaries of positive semidefinite kernels
    Shin, Kilho
    Kuboyama, Tetsuji
    ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 2007, 4754 : 313 - +
  • [26] Approximation with polynomial kernels and SVM classifiers
    Ding-Xuan Zhou
    Kurt Jetter
    Advances in Computational Mathematics, 2006, 25 : 323 - 344
  • [27] Integral representations for polynomial projections and their kernels
    Ganzburg M.I.
    Journal of Mathematical Sciences, 2012, 183 (6) : 772 - 778
  • [28] Twin-width and Polynomial Kernels
    Bonnet, Edouard
    Kim, Eun Jung
    Reinald, Amadeus
    Thomasse, Stephan
    Watrigant, Remi
    ALGORITHMICA, 2022, 84 (11) : 3300 - 3337
  • [29] Polynomial ergodicity of Markov transition kernels
    Fort, G
    Moulines, E
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 103 (01) : 57 - 99
  • [30] Polynomial summaries of positive semidefinite kernels
    Shin, Kilho
    Kuboyama, Tetsuji
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (19) : 1847 - 1862