Random Neural Networks and Deep Learning for Attack Detection at the Edge

被引:3
|
作者
Brun, Olivier [1 ]
Yin, Yonghua [2 ]
机构
[1] Univ Toulouse, CNRS, LAAS, Toulouse, France
[2] Imperial Coll, Elect & Elect Engn Dept, Intelligent Syst & Networks Grp, London SW7 2AZ, England
基金
欧盟地平线“2020”;
关键词
Cybersecurity; IoT; attack detection; deep learning; dense random neural network; Fog Computing;
D O I
10.1109/ICFC.2019.00009
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we analyze the network attacks that can be launched against Internet of Things (IoT) gateways, identify the relevant metrics to detect them, and explain how they can be computed from packet captures. We then present the principles and design of a deep learning-based approach using dense random neural networks (RNN) for the online detection of network attacks. Empirical validation results on packet captures in which attacks are inserted show that the Dense RNN correctly detects attacks.
引用
收藏
页码:11 / 14
页数:4
相关论文
共 50 条
  • [41] Cellular neural networks for edge detection
    Grassi, Giuseppe
    Vecchio, Pietro
    Di Sciascio, Eugenio
    Grieco, Luigi A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (04): : 1323 - 1328
  • [42] Edge detection with BP neural networks
    He, ZQ
    Siyal, MY
    ICSP '98: 1998 FOURTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1998, : 1382 - 1384
  • [43] Fuzzy neural networks for edge detection
    Lu, SW
    Wang, ZQ
    1997 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CONFERENCE PROCEEDINGS, VOLS I AND II: ENGINEERING INNOVATION: VOYAGE OF DISCOVERY, 1997, : 446 - 449
  • [44] Edge deep learning for neural implants: a case study of seizure detection and prediction
    Liu, Xilin
    Richardson, Andrew G.
    JOURNAL OF NEURAL ENGINEERING, 2021, 18 (04)
  • [45] Learning by optimization in random neural networks
    Atalay, V
    ADVANCES IN COMPUTER AND INFORMATION SCIENCES '98, 1998, 53 : 143 - 148
  • [46] Efficient Deep Neural Networks for Edge Computing
    Alnemari, Mohammed
    Bagherzadeh, Nader
    2019 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING (IEEE EDGE), 2019, : 1 - 7
  • [47] Scaling for edge inference of deep neural networks
    Xu, Xiaowei
    Ding, Yukun
    Hu, Sharon Xiaobo
    Niemier, Michael
    Cong, Jason
    Hu, Yu
    Shi, Yiyu
    NATURE ELECTRONICS, 2018, 1 (04): : 216 - 222
  • [48] Update Compression for Deep Neural Networks on the Edge
    Chen, Bo
    Bakhshi, Ali
    Batista, Gustavo
    Ng, Brian
    Chin, Tat-Jun
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3075 - 3085
  • [49] PhD Forum: Deep Neural Networks at the Edge
    Viramontes, Robert
    2024 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING, SMARTCOMP 2024, 2024, : 260 - 261
  • [50] Scaling for edge inference of deep neural networks
    Xiaowei Xu
    Yukun Ding
    Sharon Xiaobo Hu
    Michael Niemier
    Jason Cong
    Yu Hu
    Yiyu Shi
    Nature Electronics, 2018, 1 : 216 - 222