Ideals and quotients of diagonally quasi-symmetric functions

被引:0
|
作者
Li, Shu Xiao [1 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON, Canada
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2017年 / 24卷 / 03期
关键词
POLYNOMIALS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2004, J-C. Aval, F. Bergeron and N. Bergeron studied the algebra of diagonally quasi-symmetric functions DQSym in the ring Q[x,y] with two sets of variables. They made conjectures on the structure of the quotient Q[x,y]/< DQSym(+)>, which is a quasi-symmetric analogue of the diagonal harmonic polynomials. In this paper, we construct a Hilbert basis for this quotient when there are infinitely many variables i.e. x = x(1),x(2), and y = y(1),y(2), Then we apply this construction to the case where there are finitely many variables, and compute the second column of its Hilbert matrix.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] ASYMPTOTIC EXTREMAL GROWTH OF QUASI-SYMMETRIC FUNCTIONS
    HINKKANEN, A
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1986, 11 (02): : 295 - 319
  • [22] Quantum quasi-symmetric functions and Hecke algebras
    Thibon, J.-Y.
    Ung, B.-C.-V.
    Journal of Physics A: Mathematical and General, 29 (22):
  • [23] Binary shuffle bases for quasi-symmetric functions
    Novelli, Jean-Christophe
    Thibon, Jean-Yves
    RAMANUJAN JOURNAL, 2016, 40 (01): : 207 - 225
  • [24] Quantum quasi-symmetric functions and Hecke algebras
    Thibon, JY
    Ung, BCV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (22): : 7337 - 7348
  • [25] Quasi-symmetric functions, noncommutative symmetric functions, and Hecke algebras at q = 0
    Duchamp, G.
    Krob, D.
    Leclerc, B.
    Thibon, J.-Y.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 322 (02):
  • [26] Noncommutative symmetric functions VI: Free quasi-symmetric functions and related algebras
    Duchamp, G
    Hivert, F
    Thibon, JY
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2002, 12 (05) : 671 - 717
  • [27] Quasi-symmetric functions, noncommutative symmetric functions, and Hecke algebras at q=0
    Duchamp, G
    Krob, D
    Leclerc, B
    Thibon, JY
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (02): : 107 - 112
  • [28] Shifted quasi-symmetric functions and the Hopf algebra of peak functions
    Bergeron, N
    Mykytiuk, S
    Sottile, F
    van Willigenburg, S
    DISCRETE MATHEMATICS, 2002, 246 (1-3) : 57 - 66
  • [29] The Pieri Rule for Dual Immaculate Quasi-Symmetric Functions
    Nantel Bergeron
    Juana Sánchez-Ortega
    Mike Zabrocki
    Annals of Combinatorics, 2016, 20 : 283 - 300
  • [30] Hecke algebras, difference operators, and quasi-symmetric functions
    Hivert, F
    ADVANCES IN MATHEMATICS, 2000, 155 (02) : 181 - 238