Least squares-based recursive and iterative estimation for output error moving average systems using data filtering

被引:143
|
作者
Wang, D. Q. [1 ]
机构
[1] Qingdao Univ, Coll Automat Engn, Qingdao 266071, Peoples R China
来源
IET CONTROL THEORY AND APPLICATIONS | 2011年 / 5卷 / 14期
关键词
DUAL-RATE SYSTEMS; HAMMERSTEIN NONLINEAR-SYSTEMS; PARAMETER-ESTIMATION; AUXILIARY MODEL; IDENTIFICATION METHODS; STOCHASTIC-SYSTEMS; IN-VARIABLES; SAMPLED-DATA; CLOSED-LOOP; ALGORITHMS;
D O I
10.1049/iet-cta.2010.0416
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For parameter estimation of output error moving average (OEMA) systems, this study combines the auxiliary model identification idea with the filtering theory, transforms an OEMA system into two identification models and presents a filtering and auxiliary model-based recursive least squares (F-AM-RLS) identification algorithm. Compared with the auxiliary model-based recursive extended least squares algorithm, the proposed F-AM-RLS algorithm has a high computational efficiency. Moreover, a filtering and auxiliary model-based least squares iterative (F-AM-LSI) identification algorithm is derived for OEMA systems with finite measurement input-output data. Compared with the F-AM-RLS approach, the proposed F-AM-LSI algorithm updates the parameter estimation using all the available data at each iteration, and thus can generate highly accurate parameter estimates.
引用
收藏
页码:1648 / 1657
页数:10
相关论文
共 50 条
  • [31] Data filtering based recursive least squares parameter estimation for ARMAX models
    Liao, Yuwu
    Wang, Dongqing
    Ding, Feng
    2009 WRI INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND MOBILE COMPUTING: CMC 2009, VOL I, 2009, : 331 - +
  • [32] Filtering-based recursive least squares estimation approaches for multivariate equation-error systems by using the multiinnovation theory
    Ma, Ping
    Wang, Lei
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2021, 35 (09) : 1898 - 1915
  • [33] Recursive and Iterative Least Squares Parameter Estimation Algorithms for Multiple-Input–Output-Error Systems with Autoregressive Noise
    Jiling Ding
    Circuits, Systems, and Signal Processing, 2018, 37 : 1884 - 1906
  • [34] Filtering Based Multi-Stage Recursive Least Squares Parameter Estimation Algorithm for Input Nonlinear Output-Error Autoregressive Systems
    Ma Junxia
    Chen Jing
    Ding Feng
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 1921 - 1925
  • [35] Multistage least squares based iterative estimation for feedback nonlinear systems with moving average noises using the hierarchical identification principle
    Hu, Peipei
    Ding, Feng
    NONLINEAR DYNAMICS, 2013, 73 (1-2) : 583 - 592
  • [36] Multistage least squares based iterative estimation for feedback nonlinear systems with moving average noises using the hierarchical identification principle
    Peipei Hu
    Feng Ding
    Nonlinear Dynamics, 2013, 73 : 583 - 592
  • [37] Maximum likelihood-based recursive least-squares estimation for multivariable systems using the data filtering technique
    Xia, Huafeng
    Yang, Yongqing
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2019, 50 (06) : 1121 - 1135
  • [38] A Coupled Recursive Total Least Squares-Based Online Parameter Estimation for PMSM
    Wang, Yangding
    Xu, Shen
    Huang, Hai
    Guo, Yiping
    Jin, Hai
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2018, 13 (06) : 2344 - 2353
  • [39] The maximum likelihood least squares based iterative estimation algorithm for bilinear systems with autoregressive moving, average noise
    Li, Meihang
    Liu, Ximei
    Ding, Feng
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (12): : 4861 - 4881
  • [40] A Decomposition Based Least Squares Iterative Parameter Estimation Algorithm for Controlled Autoregressive Autoregressive Moving Average Systems
    Chen, Huibo
    Yao, Guoyu
    Ding, Rui
    2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2013, : 308 - 312