Contrast variation SANS measurement of shell monomer density profiles of smart core-shell microgels

被引:16
|
作者
Cors, Marian [1 ,2 ]
Wiehemeier, Lars [1 ]
Wrede, Oliver [1 ]
Feoktystov, Artem [3 ]
Cousin, Fabrice [4 ]
Hellweg, Thomas [1 ]
Oberdisse, Julian [2 ]
机构
[1] Bielefeld Univ, Dept Phys & Biophys Chem, Univ Str 25, D-33615 Bielefeld, Germany
[2] Univ Montpellier, CNRS, L2C, F-34095 Montpellier, France
[3] Forschungszentrum Julich, Julich Ctr Neutron Sci JCNS Heinz Maier Leibnitz, D-85748 Garching, Germany
[4] CEA Saclay, CNRS, UMR 12, Lab Leon Brillouin,UMR 12, F-91191 Gif Sur Yvette, France
关键词
SMALL-ANGLE SCATTERING; COPOLYMER MICROGELS; PHASE-TRANSITION; TEMPERATURE; PARTICLES; BEHAVIOR; HOLLOW; NANOPARTICLES; MORPHOLOGY; COLLOIDS;
D O I
10.1039/c9sm02036e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The radial density profile of deuterated poly(N,n-propyl acrylamide) shell monomers within core-shell microgels has been studied by small-angle neutron scattering in order to shed light on the origin of their linear thermally-induced swelling. The poly(N-isopropyl methacrylamide) core monomers have been contrast-matched by the H2O/D2O solvent mixture, and the intensity thus provides a direct measurement of the spatial distribution of the shell monomers. Straightforward modelling shows that their structure does not correspond to the expected picture of a well-defined external shell. A multi-shell model solved by a reverse Monte Carlo approach is then applied to extract the monomer density as a function of temperature and of the core crosslinking. It is found that most shell monomers fill the core at high temperatures approaching synthesis conditions of collapsed particles, forming only a dilute corona. As the core monomers tend to swell at lower temperatures, a skeleton of insoluble shell monomers hinders swelling, inducing the progressive linear thermoresponse.
引用
收藏
页码:1922 / 1930
页数:9
相关论文
共 50 条
  • [21] Glucose-responsive microgels with a core-shell structure
    Lapeyre, Veronique
    Ancla, Christophe
    Catargi, Bogdan
    Ravaine, Valerie
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2008, 327 (02) : 316 - 323
  • [22] Multiresponsive Core-Shell Microgels Functionalized by Nitrilotriacetic Acid
    Sommerfeld, Isabel K.
    Malyaran, Hanna
    Neuss, Sabine
    Demco, Dan E.
    Pich, Andrij
    BIOMACROMOLECULES, 2024, 25 (02) : 903 - 923
  • [23] Orthogonal superposition rheometry of soft core-shell microgels
    Bogri, Panagiota
    Pagani, Gabriele
    Vermant, Jan
    Sprakel, Joris
    Petekidis, George
    RHEOLOGICA ACTA, 2024, 63 (9-10) : 705 - 717
  • [24] Polymer chain dynamics of core-shell thermosensitive microgels
    Rubio Retama, J.
    Frick, B.
    Seydel, T.
    Stamm, M.
    Fernandez Barbero, A.
    Lopez Cabarcos, E.
    MACROMOLECULES, 2008, 41 (13) : 4739 - 4745
  • [25] SYNTHESIS OF GLUCOSE-SENSITIVE CORE-SHELL MICROGELS
    Guan Ying
    Luo Qiaofang
    Zhang Yongjun
    ACTA POLYMERICA SINICA, 2010, (03) : 280 - 284
  • [26] Core-shell microgels as model colloids for rheological studies
    Siebenbuerger, M.
    Fuchs, M.
    Ballauff, M.
    SOFT MATTER, 2012, 8 (15) : 4014 - 4024
  • [27] Interfacial Assembly of Anisotropic Core-Shell and Hollow Microgels
    Nickel, Anne C.
    Rudov, Andrey A.
    Potemkin, Igor I.
    Crassous, Jerome J.
    Richtering, Walter
    LANGMUIR, 2022, 38 (14) : 4351 - 4363
  • [28] Unusual Shell Morphologies of Responsive Amino Core-Shell Microgels Induced by pH During Shell Synthesis
    Annegarn, Marco
    Ehring, Ina
    Hellweg, Thomas
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2024, 225 (02)
  • [29] Thermochromic microgels and core-shell microgels based on fluorescence resonance energy transfer
    Okada, Kousuke
    Maeda, Yasushi
    JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 130 (01) : 201 - 205
  • [30] Shell-restricted swelling and core compression in poly(N-isopropylacrylamide) core-shell microgels
    Jones, CD
    Lyon, LA
    MACROMOLECULES, 2003, 36 (06) : 1988 - 1993