FINITE ELEMENT DISCRETIZATION OF THE STOKES AND NAVIER-STOKES EQUATIONS WITH BOUNDARY CONDITIONS ON THE PRESSURE
被引:10
|
作者:
Bernardi, Christine
论文数: 0引用数: 0
h-index: 0
机构:
CNRS, Lab Jacques Louis Lions, F-75252 Paris 05, France
Univ Paris 06, F-75252 Paris 05, FranceCNRS, Lab Jacques Louis Lions, F-75252 Paris 05, France
Bernardi, Christine
[1
,2
]
Rebollo, Tomas Chacon
论文数: 0引用数: 0
h-index: 0
机构:
Univ Seville, Dept Ecuaciones Diferenciales & Anal Numrico, E-41012 Seville, Spain
Univ Seville, IMUS, E-41012 Seville, SpainCNRS, Lab Jacques Louis Lions, F-75252 Paris 05, France
Rebollo, Tomas Chacon
[3
,4
]
Yakoubi, Driss
论文数: 0引用数: 0
h-index: 0
机构:
Univ Laval, Dept Math & Stat, GIREF, Quebec City, PQ G1V OA6, CanadaCNRS, Lab Jacques Louis Lions, F-75252 Paris 05, France
Yakoubi, Driss
[5
]
机构:
[1] CNRS, Lab Jacques Louis Lions, F-75252 Paris 05, France
We consider the Stokes and Navier-Stokes equations with boundary conditions of Dirichlet type on the velocity on one part of the boundary and involving the pressure on the rest of the boundary. We write the variational formulations of such problems. Next we propose a finite element discretization of them and perform the a priori and a posteriori analysis of the discrete problem. Some numerical experiments are presented in order to justify our strategy.
机构:
Univ Pisa, Dipartimento Matemat Appl U Dini, Via F Buonarmti 1-C, I-56127 Pisa, ItalyUniv Pisa, Dipartimento Matemat Appl U Dini, Via F Buonarmti 1-C, I-56127 Pisa, Italy
Berselli, Luigi C.
RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA,
2010,
1
(01):
: 1
-
75
机构:
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Northwestern Univ, Dept Math, Evanston, IL 60208 USAFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Chen, Gui-Qiang
Qian, Zhongmin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oxford, Math Inst, Oxford OX1 3LB, EnglandFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China