Integers without divisors in a given progression

被引:1
|
作者
Narkiewicz, Wladyslaw [1 ]
Radziejewski, Maciej [2 ]
机构
[1] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
[2] Adam Mickiewicz Univ Poznan, Fac Math & Comp Sci, PL-61614 Poznan, Poland
来源
MONATSHEFTE FUR MATHEMATIK | 2011年 / 164卷 / 01期
关键词
Divisors in progressions; ZERO-SUM PROBLEMS;
D O I
10.1007/s00605-010-0212-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An asymptotic formula is given for the number of integers n a parts per thousand currency sign x which do not have divisors in a fixed arithmetical progression. This extends a previous result of Banks et al. (Forum Math 20:1005-1037, 2008) who considered the case of progressions with prime difference.
引用
下载
收藏
页码:75 / 85
页数:11
相关论文
共 50 条
  • [31] REMARKS ON THE NUMBER OF PRIME DIVISORS OF INTEGERS
    Hassani, Mehdi
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (03): : 843 - 849
  • [32] PRIME DIVISORS OF POLYNOMIALS AT CONSECUTIVE INTEGERS
    TURK, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1980, 319 : 142 - 152
  • [33] ON DIVISORS OF SUMS OF INTEGERS .3.
    POMERANCE, C
    SARKOZY, A
    STEWART, CL
    PACIFIC JOURNAL OF MATHEMATICS, 1988, 133 (02) : 363 - 379
  • [34] COMMON DIVISORS AND SQUARE FREE INTEGERS
    KENNEDY, G
    AMERICAN MATHEMATICAL MONTHLY, 1978, 85 (01): : 54 - 55
  • [35] INTEGERS WITH CONSECUTIVE DIVISORS IN SMALL RATIO
    VOSE, MD
    JOURNAL OF NUMBER THEORY, 1984, 19 (02) : 233 - 238
  • [36] ON DIVISORS OF SUMS OF INTEGERS .4.
    SARKOZY, A
    STEWART, CL
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1988, 40 (04): : 788 - 816
  • [37] SUMS OF IMAGINARY POWERS OF DIVISORS OF INTEGERS
    HALL, RR
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 9 (36): : 571 - 580
  • [38] The distribution law of divisors on a sequence of integers
    Daoud, Mohamed Saber
    Hidri, Afef
    Naimi, Mongi
    LITHUANIAN MATHEMATICAL JOURNAL, 2015, 55 (04) : 474 - 488
  • [39] On consecutive integers divisible by the number of their divisors
    Andreescu, Titu
    Luca, Florian
    Phaovibul, M. Tip
    ACTA ARITHMETICA, 2016, 173 (03) : 269 - 281
  • [40] Integers with dense divisors (Part 2)
    Saias, E
    JOURNAL OF NUMBER THEORY, 2001, 86 (01) : 39 - 49