Radial coordinates for defect CFTs

被引:35
|
作者
Lauria, Edoardo [1 ,4 ,5 ,6 ]
Meineri, Marco [2 ]
Trevisani, Emilio [3 ,4 ,5 ,6 ]
机构
[1] Katholieke Univ Leuven, Inst Theoret Fys, Celestijnenlaan 200D, B-3001 Leuven, Belgium
[2] Ecole Polytech Fed Lausanne, Inst Phys, CH-1015 Lausanne, Switzerland
[3] Univ Porto, Fac Ciencias, Dept Fis & Astron, Ctr Fis Porto, Porto, Portugal
[4] Ecole Normale Super, Phys Theor Lab, 24 Rue Lhomond, F-75231 Paris 05, France
[5] PSL Res Univ, 24 Rue Lhomond, F-75231 Paris 05, France
[6] Perimeter Inst Theoret Phys, 31 Caroline St North, Waterloo, ON N2L 2Y5, Canada
来源
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
Conformal Field Theory; Wilson; 't Hooft and Polyakov loops; Field Theories in Higher Dimensions; Boundary Quantum Field Theory;
D O I
10.1007/JHEP11(2018)148
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the two-point function of local operators in the presence of a defect in a generic conformal field theory. We define two pairs of cross ratios, which are convenient in the analysis of the OPE in the bulk and defect channel respectively. The new coordinates have a simple geometric interpretation, which can be exploited to efficiently compute conformal blocks in a power expansion. We illustrate this fact in the case of scalar external operators. We also elucidate the convergence properties of the bulk and defect OPE decompositions of the two-point function. In particular, we remark that the expansion of the two-point function in powers of the new cross ratios converges everywhere, a property not shared by the cross ratios customarily used in defect CFT. We comment on the crucial relevance of this fact for the numerical bootstrap.
引用
收藏
页数:41
相关论文
共 50 条
  • [31] Fast Fibonacci search in determining defect location coordinates in an article
    Khandetskii, VS
    Pashchenko, VA
    Matveeva, NA
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 1999, 35 (12) : 934 - 945
  • [32] RADIAL RAY DEFECT WITH VASCULAR AND VERTEBRAL ANOMALIES
    KUTSAL, A
    GOKCEKUTSAL, Y
    ARCHIVES OF ORTHOPAEDIC AND TRAUMA SURGERY, 1989, 108 (05) : 333 - 335
  • [33] MEASURING GEOCENTRIC RADIAL COORDINATES WITH A NON-FIDUCIAL GPS NETWORK
    RIUS, A
    JUAN, JM
    HERNANDEZPAJARES, M
    MADRIGAL, AM
    BULLETIN GEODESIQUE, 1995, 69 (04): : 320 - 328
  • [34] THE SMOOTHNESS DEGREE OF ORISPHERES, RADIAL FIELDS, AND ORISPHERIC COORDINATES ON THE HADAMARD MANIFOLD
    SHCHERBAKOV, SA
    DOKLADY AKADEMII NAUK SSSR, 1983, 271 (05): : 1078 - 1082
  • [35] Radial quadrature method for evaluating the beam shape coefficients in spherical coordinates
    Shen, Jianqi
    Yu, Haitao
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2023, 305
  • [36] Singular Behavior of the Laplace Operator in Polar Spherical Coordinates and Some of Its Consequences for the Radial Wave Function at the Origin of Coordinates
    Khelashvili, A. A.
    Nadareishvili, T. P.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2015, 12 (01) : 11 - 25
  • [37] Constructing Carrollian CFTs
    Nishant Gupta
    Nemani V. Suryanarayana
    Journal of High Energy Physics, 2021
  • [38] Driven holographic CFTs
    Rangamani, Mukund
    Rozali, Moshe
    Wong, Anson
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (04):
  • [39] Thermal backflow in CFTs
    Banks, Elliot
    Donos, Aristomenis
    Gauntlett, Jerome P.
    Griffin, Tom
    Melgar, Luis
    PHYSICAL REVIEW D, 2017, 95 (02)
  • [40] Perturbations of W∞ CFTs
    Gaberdiel, Matthias R.
    Jin, Kewang
    Li, Wei
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (10):