Achieving High Doping Concentration by Dopant Vapor Deposition in Organic Solar Cells

被引:18
|
作者
Yan, Han [1 ]
Tang, Yabing [1 ]
Meng, Xiangyi [1 ]
Xiao, Tong [2 ]
Lu, Guanghao [2 ]
Ma, Wei [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Xian 710054, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Lewis acid doping; sequential doping; doped morphology; organic solar cell; high doping concentration; vapor doping; FILL FACTOR; TRANSPORT; SOLVENT; MODEL;
D O I
10.1021/acsami.8b16162
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Compared with the interfacial doping, molecular doping in bulk heterojunction (BHJ) is a more direct but challenging approach to optimize the photovoltaic performance in organic solar cells (OSCs). One of the main obstacles for its success is the low doping concentration because of the morphological damage. Starting from the phase diagram analysis, we discover that the unpreferred good miscibility between the p-type dopant and the acceptor leads to incorrect dopant dispersion, which reduces the achievable doping content. To overcome this, we use sequential doping by vapor annealing instead of blend solution doping, and we achieve the high doping concentration without sacrificing the blend film morphology. Benefiting from the undamaged film, we fulfill improved photovoltaic performance. Our positive results reveal the feasibility of high-level doping in complex organic BHJ films. It is believed that doping at high concentration potentially enlarges the extent of tunable range on electronic properties in OSCs and indicates greater improvement for device performance.
引用
收藏
页码:4178 / 4184
页数:7
相关论文
共 50 条
  • [31] Optimization of conjugated polymer blend concentration for high performance organic solar cells
    Xu, Cheng
    Wright, Matthew
    Elumalai, Naveen Kumar
    Mahmud, Md Arafat
    Goncales, Vinicius R.
    Upama, Mushfika B.
    Uddin, Ashraf
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (19) : 16437 - 16445
  • [32] Optimization of conjugated polymer blend concentration for high performance organic solar cells
    Cheng Xu
    Matthew Wright
    Naveen Kumar Elumalai
    Md Arafat Mahmud
    Vinicius R. Gonçales
    Mushfika B. Upama
    Ashraf Uddin
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 16437 - 16445
  • [33] Evaporation-controlled spray deposition process achieving ultrasmooth photoactive layer for efficient organic solar cells
    Cha, Jeongbeom
    Jin, Haedam
    Kim, Mi Kyong
    Park, Jong Hwan
    Kim, Min
    SURFACES AND INTERFACES, 2022, 28
  • [34] Dependence of Effective Doping Concentration on the Molecular Structure of Dopant: ABCV-P Doped OLEDs with Broad Range of and High Doping Concentration
    Lim, Seung Han
    Ryu, Gweon Young
    Kim, Gu Young
    Seo, Ji Hoon
    Kim, Young Kwan
    Shin, Dong Myung
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2008, 491 : 40 - 52
  • [35] A Novel Organic Dopant for Spiro-OMeTAD in High-Efficiency and Stable Perovskite Solar Cells
    Guo, Ying
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [36] InAs/Sb:GaAs quantum dot solar cells grown by metal organic chemical vapor deposition
    Guimard, Denis
    Bordel, Damien
    Morihara, Ryo
    Wakayama, Yuki
    Tanabe, Katsuaki
    Nishioka, Masao
    Arakawa, Yasuhiko
    2009 34TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, VOLS 1-3, 2009, : 2142 - 2146
  • [37] Deposition and doping of CdS/CdTe thin film solar cells
    Nima E.Gorji
    Journal of Semiconductors, 2015, (05) : 23 - 27
  • [38] Deposition and doping of CdS/CdTe thin film solar cells
    Gorji, Nima E.
    JOURNAL OF SEMICONDUCTORS, 2015, 36 (05)
  • [39] Deposition and doping of CdS/CdTe thin film solar cells
    Nima E.Gorji
    Journal of Semiconductors, 2015, 36 (05) : 23 - 27
  • [40] HIGH-CONCENTRATION ZN DOPING IN INP GROWN BY LOW-PRESSURE METALORGANIC CHEMICAL VAPOR-DEPOSITION
    CHICHIBU, S
    KUSHIBE, M
    EGUCHI, K
    FUNEMIZU, M
    OHBA, Y
    JOURNAL OF APPLIED PHYSICS, 1990, 68 (02) : 859 - 861