On semi-convergence of parameterized SHSS method for a class of singular complex symmetric linear systems

被引:6
|
作者
Li, Cheng-Liang [1 ,2 ]
Ma, Chang-Feng [1 ]
机构
[1] Fujian Normal Univ, Sch Math & Informat, Fuzhou 350117, Fujian, Peoples R China
[2] Fujian Normal Univ, FJKLMAA, Fuzhou 350117, Fujian, Peoples R China
基金
美国国家科学基金会;
关键词
Complex linear systems; Iterative method; Semi-convergence; Preconditioning; FOURIER COLLOCATION METHODS; HERMITIAN SPLITTING METHODS; HSS METHOD; BIFURCATION;
D O I
10.1016/j.camwa.2018.09.050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the parameterized single-step HSS (P-SHSS) iterative method to solve a broad class of singular complex symmetric linear systems. The semi-convergence properties of the P-SHSS method are derived under suitable conditions. Moreover, some properties of the preconditioned matrix and the optimal parameters are analyzed in detail. Numerical experiments are given to support our theoretical results and show the effectiveness of the P-SHSS method either as a solver or as a preconditioner. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:466 / 475
页数:10
相关论文
共 50 条
  • [31] Semi-convergence analysis of the GPIU method for singular nonsymmetric saddle-point problems
    Liang, Zhao-Zheng
    Zhang, Guo-Feng
    NUMERICAL ALGORITHMS, 2015, 70 (01) : 151 - 169
  • [32] Semi-convergence analysis of Uzawa-AOR method for singular saddle point problems
    Xiong, Jin-Song
    Gao, Xing-Bao
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (01): : 383 - 395
  • [33] Semi-Convergence Analysis of Uzawa Splitting Iteration Method for Singular Saddle Point Problems
    Li, Jingtao
    Ma, Changfeng
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11 (02) : 235 - 246
  • [34] Semi-convergence analysis of the GPIU method for singular nonsymmetric saddle-point problems
    Zhao-Zheng Liang
    Guo-Feng Zhang
    Numerical Algorithms, 2015, 70 : 151 - 169
  • [35] On semi-convergence of the Uzawa-HSS method for singular saddle-point problems
    Yang, Ai-Li
    Li, Xu
    Wu, Yu-Jiang
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 252 : 88 - 98
  • [36] A generalized modified HSS method for singular complex symmetric linear systems
    Zhen Chao
    Guo-Liang Chen
    Numerical Algorithms, 2016, 73 : 77 - 89
  • [37] A generalized modified HSS method for singular complex symmetric linear systems
    Chao, Zhen
    Chen, Guo-Liang
    NUMERICAL ALGORITHMS, 2016, 73 (01) : 77 - 89
  • [38] Semi-convergence analysis of preconditioned deteriorated PSS iteration method for singular saddle point problems
    Liang, Zhao-Zheng
    Zhang, Guo-Feng
    NUMERICAL ALGORITHMS, 2018, 78 (02) : 379 - 404
  • [39] Semi-convergence and relaxation parameters for a class of sirt algorithms
    Elfving, Tommy
    Nikazad, Touraj
    Hansen, Per Christian
    Electronic Transactions on Numerical Analysis, 2010, 37 : 321 - 336
  • [40] SEMI-CONVERGENCE AND RELAXATION PARAMETERS FOR A CLASS OF SIRT ALGORITHMS
    Elfving, Tommy
    Nikazad, Touraj
    Hansen, Per Christian
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2010, 37 : 321 - 336