Fractal nature of the functional laws of logarithm of a fractional Brownian motion

被引:0
|
作者
Wang, WS [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310028, Peoples R China
关键词
limsup random fractal; increment;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove limsup random fractal of functional limit law of a fractional Brownian motion.
引用
收藏
页码:203 / 211
页数:9
相关论文
共 50 条
  • [31] Equivalence of laws and null controllability for SPDEs driven by a fractional Brownian motion
    Maslowski, Bohdan
    van Neerven, Jan
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (04): : 1473 - 1498
  • [32] Scaling laws for fractional Brownian motion with power-law clock
    O'Malley, Daniel
    Cushman, John H.
    Johnson, Graham
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [33] Equivalence of laws and null controllability for SPDEs driven by a fractional Brownian motion
    Bohdan Maslowski
    Jan van Neerven
    Nonlinear Differential Equations and Applications NoDEA, 2013, 20 : 1473 - 1498
  • [34] ON FUNCTIONAL LAWS OF THE ITERATED LOGARITHM
    HUGGINS, RM
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 69 (02): : 243 - 250
  • [35] LAWS OF THE ITERATED LOGARITHM FOR BROWNIAN MOTIONS ON COMPACT MANIFOLDS
    BROSAMLER, GA
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 65 (01): : 99 - 114
  • [36] Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion
    Bratian, Vasile
    Acu, Ana-Maria
    Oprean-Stan, Camelia
    Dinga, Emil
    Ionescu, Gabriela-Mariana
    MATHEMATICS, 2021, 9 (22)
  • [37] Measuring the fractal dimension of diesel soot agglomerates by fractional Brownian motion processor
    Luo, CH
    Lee, WMG
    Lai, YC
    Wen, CY
    Liaw, JJ
    ATMOSPHERIC ENVIRONMENT, 2005, 39 (19) : 3565 - 3572
  • [38] SECOND-ORDER LIMIT LAWS FOR OCCUPATION TIMES OF FRACTIONAL BROWNIAN MOTION
    Xu, Fangjun
    JOURNAL OF APPLIED PROBABILITY, 2017, 54 (02) : 444 - 461
  • [39] CENTRAL LIMIT THEOREM FOR AN ADDITIVE FUNCTIONAL OF THE FRACTIONAL BROWNIAN MOTION
    Hu, Yaozhong
    Nualart, David
    Xu, Fangjun
    ANNALS OF PROBABILITY, 2014, 42 (01): : 168 - 203
  • [40] The fractional mixed fractional Brownian motion
    El-Nouty, C
    STATISTICS & PROBABILITY LETTERS, 2003, 65 (02) : 111 - 120