Symplectic Lie-Rinehart-Jacobi Algebras and Contact Manifolds

被引:1
|
作者
Okassa, Eugene [1 ]
机构
[1] Univ Marien NGOUABI, Fac Sci, Dept Math, BP 69 Brazzaville, Brazzaville, Rep Congo
关键词
Lie-Rinehart algebras; differential operators; Jacobi manifolds; symplectic manifolds; contact manifolds;
D O I
10.4153/CMB-2011-033-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a characterization of contact manifolds in terms of symplectic Lie-Rinehart-Jacobi algebras. We also give a sufficient condition for a Jacobi manifold to be a contact manifold.
引用
收藏
页码:716 / 725
页数:10
相关论文
共 50 条
  • [31] Universal Enveloping Algebras of Lie–Rinehart Algebras as a Left Adjoint Functor
    Paolo Saracco
    Mediterranean Journal of Mathematics, 2022, 19
  • [32] DUALITY FOR DIFFERENTIAL OPERATORS OF LIE-RINEHART ALGEBRAS
    Lambre, Thierry
    Le Meur, Patrick
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 297 (02) : 405 - 454
  • [33] Universal central extensions of Lie-Rinehart algebras
    Castiglioni, J. L.
    Garcia-Martinez, X.
    Ladra, M.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (07)
  • [34] ON THE HISTORY OF LIE BRACKETS, CROSSED MODULES, AND LIE-RINEHART ALGEBRAS
    Huebschmann, Johannes
    JOURNAL OF GEOMETRIC MECHANICS, 2021, 13 (03): : 385 - 402
  • [35] Structure of symplectic invariant Lie subalgebras of symplectic derivation Lie algebras
    Morita, Shigeyuki
    Sakasai, Takuya
    Suzuki, Masaaki
    ADVANCES IN MATHEMATICS, 2015, 282 : 291 - 334
  • [36] Symplectic Jacobi-Jordan algebras
    Baklouti, Amir
    Benayadi, Said
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (08): : 1557 - 1578
  • [37] CROSSED MODULES FOR HOM-LIE-RINEHART ALGEBRAS
    Zhang, Tao
    Han, Fengying
    Bi, Yanhui
    COLLOQUIUM MATHEMATICUM, 2018, 152 (01) : 1 - 14
  • [38] Jacobi algebras on flat manifolds
    Kal'nitskii V.S.
    Journal of Mathematical Sciences, 2005, 131 (1) : 5345 - 5350
  • [39] SYMPLECTIC REFLECTION ALGEBRAS AND AFFINE LIE ALGEBRAS
    Etingof, Pavel
    MOSCOW MATHEMATICAL JOURNAL, 2012, 12 (03) : 543 - 565
  • [40] HOMOGENEOUS SYMPLECTIC 4-MANIFOLDS AND FINITE DIMENSIONAL LIE ALGEBRAS OF SYMPLECTIC VECTOR FIELDS ON THE SYMPLECTIC 4-SPACE
    Alekseevsky, D., V
    Santi, A.
    MOSCOW MATHEMATICAL JOURNAL, 2020, 20 (02) : 217 - 256