Automated Analysis of Microscopy Images using Deep Convolutional Neural Networks

被引:0
|
作者
Banadaki, Yaser [1 ]
Okunoye, Adetayo [2 ]
Batra, Sanjay [1 ]
Martinez, Eduardo [1 ]
Bai, Shuju [3 ]
Sharifi, Safura [4 ]
机构
[1] Southern Univ, Dept Comp Sci, Baton Rouge, LA 70813 USA
[2] Univ Georgia, Dept Comp Sci, Athens, GA 30602 USA
[3] Clayton State Univ, Dept Comp Sci & Informat Technol, Morrow, GA 30260 USA
[4] Univ Illinois, Dept Phys, Champaign, IL 61820 USA
关键词
Cell Identification; Deep Convolutional Neural Networks; Microscopy Images; Learning algorithms; CLASSIFICATION;
D O I
10.1117/12.2584497
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The general cell quantification and identification have technical limitations concerning the fast and accurate detection of complex morphological cells, especially for overlapping cells, irregular cell shapes, bad focal planes, among other factors. We use the deep convolutional neural networks (DCNN) to classify the annotated images of five types of white blood cells. The accuracy and performance of the proposed framework are evaluated for the blood cell classifications. The results demonstrate that the DCNN model performs close to the accuracy of 80% and provides an accurate and fast method for hematological laboratories.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Automated Road Crack Detection Using Deep Convolutional Neural Networks
    Mandal, Vishal
    Uong, Lan
    Adu-Gyamfi, Yaw
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 5212 - 5215
  • [22] Automated Truck Taxonomy Classification Using Deep Convolutional Neural Networks
    Abdullah Almutairi
    Pan He
    Anand Rangarajan
    Sanjay Ranka
    International Journal of Intelligent Transportation Systems Research, 2022, 20 : 483 - 494
  • [23] Automated Detection of Diabetic Retinopathy Using Deep Convolutional Neural Networks
    Xu, Kele
    Zhu, Li
    Wang, Ruixing
    Liu, Chang
    Zhao, Yi
    MEDICAL PHYSICS, 2016, 43 (06) : 3406 - 3406
  • [24] Automated bat call classification using deep convolutional neural networks
    Schwab, E.
    Pogrebnoj, S.
    Freund, M.
    Flossmann, F.
    Vogl, S.
    Frommolt, K-H
    BIOACOUSTICS-THE INTERNATIONAL JOURNAL OF ANIMAL SOUND AND ITS RECORDING, 2023, 32 (01): : 1 - 16
  • [25] Fully automated carbonate petrography using deep convolutional neural networks
    Koeshidayatullah, Ardiansyah
    Morsilli, Michele
    Lehrmann, Daniel J.
    Al-Ramadan, Khalid
    Payne, Jonathan L.
    MARINE AND PETROLEUM GEOLOGY, 2020, 122 (122)
  • [26] Automated Segmentation of Geographic Atrophy Using Deep Convolutional Neural Networks
    Hu, Zhihong
    Wang, Ziyuan
    Sadda, SriniVas R.
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [27] Deep convolutional neural networks to restore single-shot electron microscopy images
    Lobato, I.
    Friedrich, T.
    Van Aert, S.
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [28] Application of deep convolutional neural networks in classification of protein subcellular localization with microscopy images
    Xiao, Mengli
    Shen, Xiaotong
    Pan, Wei
    GENETIC EPIDEMIOLOGY, 2019, 43 (03) : 330 - 341
  • [29] Deep convolutional neural networks to restore single-shot electron microscopy images
    I. Lobato
    T. Friedrich
    S. Van Aert
    npj Computational Materials, 10
  • [30] Vessel Detection in Ultrasound Images Using Deep Convolutional Neural Networks
    Smistad, Erik
    Lovstakken, Lasse
    DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 : 30 - 38