Continuum limit of fishnet graphs and AdS sigma model

被引:29
|
作者
Basso, Benjamin [1 ]
Zhong, De-liang [1 ]
机构
[1] Univ Paris 06, Sorbonne Univ, Univ PSL, Lab Phys Theor,Ecole Normale Super,CNRS, 24 Rue Lhomond, F-75005 Paris, France
关键词
Integrable Field Theories; Sigma Models; AdS-CFT Correspondence; Conformal Field Theory; THERMODYNAMIC BETHE-ANSATZ; ELASTIC-SCATTERING THEORIES; ADS/CFT INTEGRABILITY; FIELD-THEORIES; FACTORIZED SCATTERING; MASSLESS FLOWS; TBA EQUATIONS; S-MATRIX; OPERATORS; GORDON;
D O I
10.1007/JHEP01(2019)002
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider the continuum limit of 4d planar fishnet diagrams using integrable spin chain methods borrowed from the N = 4 Super-Yang-Mills theory. These techniques give us control on the scaling dimensions of single-trace operators for all values of the coupling constant in the fishnet theory. We use them to study the thermodynamical limit of the BMN operator corresponding to the spin chain ferromagnetic vacuum. We find that its scaling dimension exhibits a critical behaviour when the coupling constant approaches Zamolodchikov's critical coupling. Analysis close to that point suggests that the continuum limit of the fishnet graphs is controlled by the two-dimensional AdS(5) non-linear sigma model. More generally, we present evidence that the fishnet diagrams define an integrable lattice regularization of the AdS(5) model. A system of massless TBA equations is derived for the tachyon energy by dualizing the TBA equations of the weakly coupled planar N = 4 SYM theory.
引用
收藏
页数:46
相关论文
共 50 条
  • [1] Continuum limit of fishnet graphs and AdS sigma model
    Benjamin Basso
    De-liang Zhong
    [J]. Journal of High Energy Physics, 2019
  • [2] THE CONTINUUM LIMIT OF THE KURAMOTO MODEL ON SPARSE RANDOM GRAPHS
    Medvedev, Georgi S.
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (04) : 883 - 898
  • [3] Lattice AdS geometry and continuum limit
    Ma, Chen-Te
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (17):
  • [4] The continuum limit of critical random graphs
    L. Addario-Berry
    N. Broutin
    C. Goldschmidt
    [J]. Probability Theory and Related Fields, 2012, 152 : 367 - 406
  • [5] The continuum limit of critical random graphs
    Addario-Berry, L.
    Broutin, N.
    Goldschmidt, C.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2012, 152 (3-4) : 367 - 406
  • [6] Continuum Limit of Lipschitz Learning on Graphs
    Roith, Tim
    Bungert, Leon
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2023, 23 (02) : 393 - 431
  • [7] Continuum Limit of Lipschitz Learning on Graphs
    Tim Roith
    Leon Bungert
    [J]. Foundations of Computational Mathematics, 2023, 23 : 393 - 431
  • [8] CONTINUUM-LIMIT OF THE HIERARCHICAL O(N) NONLINEAR SIGMA-MODEL
    GAWEDZKI, K
    KUPIAINEN, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 106 (04) : 533 - 550
  • [9] A new limit of the AdS5 x S5 sigma model
    Berkovits, Nathan
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2007, (08):
  • [10] Continuum limit of critical inhomogeneous random graphs
    Bhamidi, Shankar
    Sen, Sanchayan
    Wang, Xuan
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2017, 169 (1-2) : 565 - 641