Real-time implementation of the spiral algorithm for Shack-Hartmann wavefront sensor pattern sorting on an FPGA

被引:8
|
作者
Mauch, Steffen [1 ]
Reger, Johann [1 ]
机构
[1] Tech Univ Ilmenau, Control Engn Grp, POB 10 05 65, D-98684 Ilmenau, Germany
关键词
Adaptive optics; Wavefront sensing; Shack-Hartmann wavefront sensor; Spiral algorithm; Field Programmable Gate Array (FPGA); Dynamic range extension; Pattern sorting algorithm; ADAPTIVE OPTICS; DYNAMIC-RANGE;
D O I
10.1016/j.measurement.2016.06.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A real-time implementation of the spiral algorithm is proposed for sorting the spot patterns of a Shack-Hartmann Wavefront Sensor with an FPGA. The standard spiral algorithm is adapted to the end of rendering the algorithm real-time capable, deterministic, and efficient such that it finally be highly suited for implementation on an FPGA. Preserving the primary characteristics of the original spiral algorithm, i.e. high-range and accuracy, the modified algorithm additionally shows low-latency and high-throughput concerning the ordering and calculation of the centroids. Simulation and experimental results underscore that the algorithm yields excellent performance in view of run-time and robustness requirements while remaining relatively simple in its implementation. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:63 / 69
页数:7
相关论文
共 50 条
  • [31] Integration of a photodiode array and centroid processing on a single CMOS chip for a real-time Shack-Hartmann wavefront sensor
    Pui, BH
    Hayes-Gill, B
    Clark, M
    Somekh, MG
    See, CW
    Morgan, S
    Ng, A
    IEEE SENSORS JOURNAL, 2004, 4 (06) : 787 - 794
  • [33] Optimization for high precision Shack-Hartmann wavefront sensor
    Li, Chao
    Xia, Mingliang
    Liu, Zhaonan
    Li, Dayu
    Xuan, Li
    OPTICS COMMUNICATIONS, 2009, 282 (22) : 4333 - 4338
  • [34] Wavefront reconstruction algorithms for the adaptive Shack-Hartmann sensor
    Seifert, L
    Tiziani, HJ
    Osten, W
    Optical Measurement Systems for Industrial Inspection IV, Pts 1 and 2, 2005, 5856 : 544 - 553
  • [35] Preliminary results of the implementation of a low-cost Shack-Hartmann wavefront sensor
    Jose Luis, Magana Chavez
    Eloisa, Balderas Mata Sandra
    David, Serrano-Garcia, I
    Joel, Cervantes-L
    INFRARED REMOTE SENSING AND INSTRUMENTATION XXX, 2022, 12233
  • [36] Fast and accurate wavefront sensing algorithm of Shack-Hartmann sensor for adaptive optics
    Yoo, Jae Eun
    Youn, Sung Kie
    ASTRONOMICAL ADAPTATIVE OPTICS SYSTEMS AND APPLICATIONS III, 2007, 6691
  • [37] Wavefront measuring algorithm with improved measurement resolution using a Shack-Hartmann sensor
    Park, SK
    Baik, SH
    Seo, YS
    Kim, CJ
    Ra, SW
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2003, 42 (06) : 743 - 750
  • [38] Shack-Hartmann wavefront sensor for beam quality measurements
    Kudryashov, AV
    Panchenko, VY
    Zavalova, VY
    SEVENTH INTERNATIONAL SYMPOSIUM ON LASER METROLOGY APPLIED TO SCIENCE, INDUSTRY, AND EVERYDAY LIFE, PTS 1 AND 2, 2002, 4900 : 331 - 338
  • [39] Reference-free Shack-Hartmann wavefront sensor
    Zhao, Liping
    Guo, Wenjiang
    Li, Xiang
    Chen, I-Ming
    OPTICS LETTERS, 2011, 36 (15) : 2752 - 2754
  • [40] Shack-Hartmann wavefront sensor based on Kalman filter
    Gu, De
    Liu, Xing
    OPTICAL ENGINEERING, 2022, 61 (09)