Singularities and heteroclinic connections in complex-valued evolutionary equations with a quadratic nonlinearity

被引:0
|
作者
Jaquette, Jonathan [1 ]
Lessard, Jean-Philippe [2 ]
Takayasu, Akitoshi [3 ]
机构
[1] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 0B9, Canada
[3] Univ Tsukuba, Fac Engn Informat & Syst, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
基金
加拿大自然科学与工程研究理事会; 日本学术振兴会;
关键词
Nonlinear heat equation; Heteroclinic connections; Global existence of solution; Rigorous numerics; PARAMETERIZATION METHOD; BLOW-UP; CRITICAL EXPONENTS; HEAT-EQUATION;
D O I
10.1016/j.cnsns.2021.106188
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the dynamics of solutions to complex-valued evolutionary partial differential equations (PDEs) and show existence of heteroclinic orbits from nontrivial equilibria to zero via computer-assisted proofs. We also show that the existence of unbounded solutions along unstable manifolds at the equilibrium follows from the existence of heteroclinic orbits. Our computer-assisted proof consists of three separate techniques of rigorous numerics: an enclosure of a local unstable manifold at the equilibria, a rigorous integration of PDEs, and a constructive validation of a trapping region around the zero equilibrium. (C) 2021 The Authors. Published by Elsevier B.V.
引用
收藏
页数:14
相关论文
共 50 条