Singularities and heteroclinic connections in complex-valued evolutionary equations with a quadratic nonlinearity

被引:0
|
作者
Jaquette, Jonathan [1 ]
Lessard, Jean-Philippe [2 ]
Takayasu, Akitoshi [3 ]
机构
[1] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 0B9, Canada
[3] Univ Tsukuba, Fac Engn Informat & Syst, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
基金
加拿大自然科学与工程研究理事会; 日本学术振兴会;
关键词
Nonlinear heat equation; Heteroclinic connections; Global existence of solution; Rigorous numerics; PARAMETERIZATION METHOD; BLOW-UP; CRITICAL EXPONENTS; HEAT-EQUATION;
D O I
10.1016/j.cnsns.2021.106188
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the dynamics of solutions to complex-valued evolutionary partial differential equations (PDEs) and show existence of heteroclinic orbits from nontrivial equilibria to zero via computer-assisted proofs. We also show that the existence of unbounded solutions along unstable manifolds at the equilibrium follows from the existence of heteroclinic orbits. Our computer-assisted proof consists of three separate techniques of rigorous numerics: an enclosure of a local unstable manifold at the equilibria, a rigorous integration of PDEs, and a constructive validation of a trapping region around the zero equilibrium. (C) 2021 The Authors. Published by Elsevier B.V.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Singularities of Complex-Valued Solutions to Linear Parabolic Equations
    Mooney, Connor
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (06) : 4413 - 4426
  • [2] CONVERGENCE AND BLOW-UP OF SOLUTIONS FOR A COMPLEX-VALUED HEAT EQUATION WITH A QUADRATIC NONLINEARITY
    Guo, Jong-Shenq
    Ninomiya, Hirokazu
    Shimojo, Masahiko
    Yanagida, Eiji
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (05) : 2447 - 2467
  • [3] Dynamics for a complex-valued heat equation with an inverse nonlinearity
    Guo, Jong-Shenq
    Ling, Chia-Tung
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (01) : 153 - 160
  • [4] CSE: Complex-Valued System With Evolutionary Algorithm
    Yang, Bin
    Wang, Guan
    Bao, Wenzheng
    Chen, Yuehui
    Jia, Lina
    IEEE ACCESS, 2019, 7 : 90268 - 90276
  • [5] Long range scattering for the complex-valued Klein-Gordon equation with quadratic nonlinearity in two dimensions
    Masaki, Satoshi
    Segata, Jun-ichi
    Uriya, Kota
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 139 : 177 - 203
  • [6] A Fully Complex-Valued Neural Network for Rapid Solution of Complex-Valued Systems of Linear Equations
    Xiao, Lin
    Meng, Weiwei
    Lu, Rongbo
    Yang, Xi
    Liao, Bolin
    Ding, Lei
    ADVANCES IN NEURAL NETWORKS - ISNN 2015, 2015, 9377 : 444 - 451
  • [7] Complex-Valued Burgers and KdV–Burgers Equations
    Netra Khanal
    Jiahong Wu
    Juan-Ming Yuan
    Bing-Yu Zhang
    Journal of Nonlinear Science, 2010, 20 : 341 - 360
  • [8] SINGULAR INTEGRAL EQUATIONS WITH COMPLEX-VALUED KERNELS
    TRJITZINSKY, WJ
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (01) : 58 - 58
  • [9] Resolution of singularities via deep complex-valued neural networks
    Nitta, Tohru
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (11) : 4170 - 4178
  • [10] A Fully Complex-Valued Gradient Neural Network for Rapidly Computing Complex-Valued Linear Matrix Equations
    Xiao Lin
    Lu Rongbo
    CHINESE JOURNAL OF ELECTRONICS, 2017, 26 (06) : 1194 - 1197