Deformation quantization of classical fields

被引:28
|
作者
García-Compeán, H
Plebanski, JF
Przanowski, M
Turrubiates, FJ
机构
[1] Inst Politecn Nacl, Dept Fis, Ctr Invest & Estudios Avanzados, Mexico City 07000, DF, Mexico
[2] Tech Univ Lodz, Inst Phys, PL-93005 Lodz, Poland
[3] Inst Politecn Nacl, Dept Fis, Ctr Invest & Estudios Avanzados, Mexico City 07000, DF, Mexico
来源
关键词
deformation quantization; field theory;
D O I
10.1142/S0217751X01003652
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We study the deformation quantization of scalar and Abelian gauge classical free fields. Stratonovich-Weyl quantizer, star products and Wigner functionals are obtained in field and oscillator variables. The Abelian gauge theory is particularly intriguing since the Wigner functional is factorized into a physical part and the other one containing the constraints only. Some effects of nontrivial topology within the deformation quantization formalism are also considered.
引用
收藏
页码:2533 / 2558
页数:26
相关论文
共 50 条
  • [21] DEFORMATION QUANTIZATION
    WEINSTEIN, A
    ASTERISQUE, 1995, (227) : 389 - 409
  • [22] Quantization is deformation
    Sternheimer, D
    NONCOMMUTATIVE GEOMETRY AND REPRESENTATION THEORY IN MATHEMATICAL PHYSICS, 2005, 391 : 331 - 352
  • [23] Ω-deformation and quantization
    Junya Yagi
    Journal of High Energy Physics, 2014
  • [24] Ω-deformation and quantization
    Yagi, Junya
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (08):
  • [25] ON QUANTIZATION OF FIELDS
    ROSENFELD, L
    NUCLEAR PHYSICS, 1963, 40 (03): : 353 - &
  • [26] NEW VIEW ON QUANTIZATION - QUANTIZATION AS A DEFORMATION
    NIEDERLE, J
    TOLAR, J
    CESKOSLOVENSKY CASOPIS PRO FYSIKU SEKCE A, 1978, 28 (03): : 258 - 263
  • [28] Symmetries and classical quantization
    Nirov, KS
    Plyushchay, MS
    PHYSICS LETTERS B, 1997, 405 (1-2) : 114 - 120
  • [29] ON QUANTIZATION OF CLASSICAL SYSTEMS
    AMIET, JP
    NUOVO CIMENTO, 1963, 29 (01): : 69 - +
  • [30] A Classical Explanation of Quantization
    Groessing, Gerhard
    Pascasio, Johannes Mesa
    Schwabl, Herbert
    FOUNDATIONS OF PHYSICS, 2011, 41 (09) : 1437 - 1453