Artificial Neural Network Based Digital Temperature Compensation Method For Aluminum Nitride MEMS Resonators

被引:0
|
作者
Xu, Changting [1 ]
Piazza, Gianluca [1 ]
机构
[1] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
关键词
artificial neural network; digital temperature compensation method; aluminum nitride MEMS resonators; OSCILLATOR;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reports on the demonstration of an effective use of an artificial neural network (ANN) algorithm for the implementation of a digital temperature compensation method (DTCM) for aluminum nitride (AlN) MEMS resonators. This method resulted in an improved frequency-temperature stability (14 ppm from -40 degrees C to + 80 degrees C with respect to 100 ppm when using a resistive-feedback control circuit), while consuming very low ovenization power (as low as 390 mu W over the same temperature range). To our knowledge, this implementation exhibits the highest figure of merit (product of oven gain times temperature range and 1/power consumption) ever demonstrated for any ovenized MEMS resonators. Interestingly, the same technique can be used to compensate for fabrication-induced frequency variations, hence eliminating the need for trimming.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Uncertainty analysis of sensitivity of MEMS microphone based on artificial neural network
    Liu, Lei
    Jia, Renxu
    IEICE ELECTRONICS EXPRESS, 2019, 16 (24)
  • [42] Electronic Temperature Compensation of Clamped-Clamped Beam MEMS Resonators
    Zadeh, S. A. Gorji
    Saha, T.
    Allidina, K.
    Nabki, F.
    El-Gamal, M. N.
    53RD IEEE INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 1193 - 1196
  • [43] Temperature-Compensated Aluminum Nitride Lamb Wave Resonators
    Lin, Chih-Ming
    Yen, Ting-Ta
    Lai, Yun-Ju
    Felmetsger, Valery V.
    Hopcroft, Matthew A.
    Kuypers, Jan H.
    Pisano, Albert P.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2010, 57 (03) : 524 - 532
  • [44] Experimental analysis on the turning of aluminum alloy 7075 based on Taguchi method and artificial neural network
    Joshy A.
    Dsouza R.
    Muthirulan V.
    Sachidananda K.H.
    Journal Europeen des Systemes Automatises, 2019, 52 (05): : 429 - 437
  • [45] RF Passive Components Based on Aluminum Nitride Cross-Sectional Lame-Mode MEMS Resonators
    Cassella, Cristian
    Chen, Guofeng
    Qian, Zhenyun
    Hummel, Gwendolyn
    Rinaldi, Matteo
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (01) : 237 - 243
  • [46] A 586 MHz Microcontroller Compensated MEMS Oscillator Based on Ovenized Aluminum Nitride Contour-Mode Resonators
    Tazzoli, A.
    Kuo, N. -K.
    Rinaldi, M.
    Pak, H.
    Fry, D.
    Bail, D.
    Stevens, D.
    Piazza, Gianluca
    2012 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2012, : 1055 - 1058
  • [47] BAW resonators based on aluminum nitride thin films
    Dubois, MA
    Muralt, P
    Plessky, V
    1999 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 1999, : 907 - 910
  • [48] Artificial neural network based method for temperature correction in FDS measurement of transformer insulation
    Mousavi, Seyed Amidedin
    Sedighizadeh, Mostafa
    Hekmati, Arsalan
    Bigdeli, Mehdi
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (14)
  • [49] Temperature Compensation of Ultrasonic Flow Measurement Based on the Neural Network
    Wang, Yan-xia
    Li, Zhi-hao
    2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL III, PROCEEDINGS, 2009, : 21 - 24
  • [50] Active MEMS-based flow control using artificial neural network
    Couchot, Jean-Francois
    Deschinkel, Karine
    Salomon, Michel
    MECHATRONICS, 2013, 23 (07) : 898 - 905