Regression models for the analysis of longitudinal Gaussian data from multiple sources

被引:10
|
作者
O'Brien, LM
Fitzmaurice, GM
机构
[1] Colby Coll, Dept Math, Waterville, ME 04901 USA
[2] Brigham & Womens Hosp, Div Gen Med, Boston, MA 02120 USA
关键词
covariance modelling; mixed-effects models; multiple informants; psychiatry; repeated measures;
D O I
10.1002/sim.2056
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a regression model for the joint analysis of longitudinal multiple source Gaussian data. Longitudinal multiple source data arise when repeated measurements are taken from two or more sources, and each source provides a measure of the same underlying variable and on the same scale. This type of data generally produces a relatively large number of observations per subject; thus estimation of an unstructured covariance matrix often may not be possible. We consider two methods by which parsimonious models for the covariance can be obtained for longitudinal multiple source data. The methods are illustrated with an example of multiple informant data arising from a longitudinal interventional trial in psychiatry. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:1725 / 1744
页数:20
相关论文
共 50 条
  • [21] Regression models for mixed Poisson and continuous longitudinal data
    Yang, Ying
    Kang, Han
    Mao, Kai
    Zhang, He
    STATISTICS IN MEDICINE, 2007, 26 (20) : 3782 - 3800
  • [22] Unsupervised learning of mixture regression models for longitudinal data
    Xu, Peirong
    Peng, Heng
    Huang, Tao
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 125 : 44 - 56
  • [23] Variable selection in robust regression models for longitudinal data
    Fan, Yali
    Qin, Guoyou
    Zhu, Zhongyi
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 109 : 156 - 167
  • [24] Analysis of multiple SAR models from regression and classification methods
    Gupta, Rishi R.
    Jamois, Eric A.
    Subramanian, Kas
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233 : 234 - 234
  • [25] MODELS FOR ANALYSIS OF LONGITUDINAL DATA
    GOLDSTEIN, H
    BAXTERJONES, A
    HELMS, P
    EUROPEAN RESPIRATORY JOURNAL, 1993, 6 (09) : 1416 - 1416
  • [26] Bayesian longitudinal low-rank regression models for imaging genetic data from longitudinal studies
    Lu, Zhao-Hua
    Khondker, Zakaria
    Ibrahim, Joseph G.
    Wang, Yue
    Zhu, Hongtu
    NEUROIMAGE, 2017, 149 : 305 - 322
  • [27] Gaussian process models for reference ET estimation from alternative meteorological data sources
    Holman, Daniel
    Sridharan, Mohan
    Gowda, Prasanna
    Porter, Dana
    Marek, Thomas
    Howell, Terry
    Moorhead, Jerry
    JOURNAL OF HYDROLOGY, 2014, 517 : 28 - 35
  • [28] Semiparametric regression models and sensitivity analysis of longitudinal data with non-random dropouts
    Todem, David
    Kim, KyungMann
    Fine, Jason
    Peng, Limin
    STATISTICA NEERLANDICA, 2010, 64 (02) : 133 - 156
  • [29] Development of Multiple Regression Models to Predict Sources of Fecal Pollution
    Hall, Kimberlee K.
    Scheuerman, Phillip R.
    WATER ENVIRONMENT RESEARCH, 2017, 89 (11) : 1961 - 1969
  • [30] Analysis of longitudinal Gaussian data with missing data on the response variable
    Jacqmin-Gadda, H
    Commenges, D
    Dartigues, JF
    REVUE D EPIDEMIOLOGIE ET DE SANTE PUBLIQUE, 1999, 47 (06): : 525 - 534