We present a regression model for the joint analysis of longitudinal multiple source Gaussian data. Longitudinal multiple source data arise when repeated measurements are taken from two or more sources, and each source provides a measure of the same underlying variable and on the same scale. This type of data generally produces a relatively large number of observations per subject; thus estimation of an unstructured covariance matrix often may not be possible. We consider two methods by which parsimonious models for the covariance can be obtained for longitudinal multiple source data. The methods are illustrated with an example of multiple informant data arising from a longitudinal interventional trial in psychiatry. Copyright (c) 2005 John Wiley & Sons, Ltd.
机构:
Univ Sao Paulo, Dept Estat, Inst Matemat & Estat, BR-05314970 Sao Paulo, BrazilUniv Sao Paulo, Dept Estat, Inst Matemat & Estat, BR-05314970 Sao Paulo, Brazil
Alencar, Airlane P.
Singer, Julio M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Dept Estat, Inst Matemat & Estat, BR-05314970 Sao Paulo, BrazilUniv Sao Paulo, Dept Estat, Inst Matemat & Estat, BR-05314970 Sao Paulo, Brazil
Singer, Julio M.
Rocha, Francisco Marcelo M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Sao Paulo, Dept Ciencia & Tecnol, Sao Jose Dos Campos, SP, BrazilUniv Sao Paulo, Dept Estat, Inst Matemat & Estat, BR-05314970 Sao Paulo, Brazil