Regression models for the analysis of longitudinal Gaussian data from multiple sources

被引:10
|
作者
O'Brien, LM
Fitzmaurice, GM
机构
[1] Colby Coll, Dept Math, Waterville, ME 04901 USA
[2] Brigham & Womens Hosp, Div Gen Med, Boston, MA 02120 USA
关键词
covariance modelling; mixed-effects models; multiple informants; psychiatry; repeated measures;
D O I
10.1002/sim.2056
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a regression model for the joint analysis of longitudinal multiple source Gaussian data. Longitudinal multiple source data arise when repeated measurements are taken from two or more sources, and each source provides a measure of the same underlying variable and on the same scale. This type of data generally produces a relatively large number of observations per subject; thus estimation of an unstructured covariance matrix often may not be possible. We consider two methods by which parsimonious models for the covariance can be obtained for longitudinal multiple source data. The methods are illustrated with an example of multiple informant data arising from a longitudinal interventional trial in psychiatry. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:1725 / 1744
页数:20
相关论文
共 50 条
  • [1] Gaussian copula based composite quantile regression in semivarying models with longitudinal data
    Wang, Kangning
    Jin, Haotian
    Sun, Xiaofei
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (04) : 1110 - 1132
  • [3] Competing regression models for longitudinal data
    Alencar, Airlane P.
    Singer, Julio M.
    Rocha, Francisco Marcelo M.
    BIOMETRICAL JOURNAL, 2012, 54 (02) : 214 - 229
  • [4] Sampling adjusted analysis of dynamic additive regression models for longitudinal data
    Martinussen, T
    Scheike, TH
    SCANDINAVIAN JOURNAL OF STATISTICS, 2001, 28 (02) : 303 - 323
  • [5] Multiple quantile regression analysis of longitudinal data: Heteroscedasticity and efficient estimation
    Cho, Hyunkeun
    Kim, Seonjin
    Kim, Mi-Ok
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 155 : 334 - 343
  • [6] Cumulative regression function tests for regression models for longitudinal data
    Scheike, TH
    Zhang, MJ
    ANNALS OF STATISTICS, 1998, 26 (04): : 1328 - 1355
  • [7] Marginal and dynamic regression models for longitudinal data
    Schmid, CH
    STATISTICS IN MEDICINE, 2001, 20 (21) : 3295 - 3311
  • [8] Beta rectangular regression models to longitudinal data
    Ribeiro, Vinicius S. O.
    Nobre, Juvencio S.
    dos Santos, Jose Roberto S.
    Azevedo, Caio L. N. .
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2021, 35 (04) : 851 - 874
  • [9] Median Regression Models for Longitudinal Data with Dropouts
    Yi, Grace Y.
    He, Wenqing
    BIOMETRICS, 2009, 65 (02) : 618 - 625
  • [10] Bayesian quantile regression for longitudinal data models
    Luo, Youxi
    Lian, Heng
    Tian, Maozai
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (11) : 1635 - 1649