A 2-arc Transitive Hexavalent Nonnormal Cayley Graph on A119

被引:0
|
作者
Ling, Bo [1 ]
Li, Wanting [1 ]
Lou, Bengong [2 ]
机构
[1] Yunnan Minzu Univ, Sch Math & Comp Sci, Kunming 650031, Yunnan, Peoples R China
[2] Yunnan Univ, Sch Math & Stat, Kunming 650031, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
simple group; nonnormal Cayley graph; arc-transitive graph; automorphism group;
D O I
10.3390/math9222935
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Cayley graph & UGamma;=Cay(G,S) is said to be normal if the base group G is normal in Aut & UGamma;. The concept of the normality of Cayley graphs was first proposed by M.Y. Xu in 1998 and it plays a vital role in determining the full automorphism groups of Cayley graphs. In this paper, we construct an example of a 2-arc transitive hexavalent nonnormal Cayley graph on the alternating group A119. Furthermore, we determine the full automorphism group of this graph and show that it is isomorphic to A120.
引用
收藏
页数:7
相关论文
共 50 条