On base manifolds of Lagrangian fibrations

被引:9
|
作者
Daisuke, Matsushita [1 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
关键词
Lagrangian fibration; singularity; base manifolds; symplectic varieties; HIGHER DIRECT IMAGES; SYMPLECTIC SINGULARITIES; DUALIZING SHEAVES; VARIETIES;
D O I
10.1007/s11425-014-4927-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider base spaces of Lagrangian fibrations from singular symplectic varieties. After defining cohomologically irreducible symplectic varieties, we construct an example of Lagrangian fibration whose base space is isomorphic to a quotient of the projective space. We also prove that the base space of Lagrangian fibration from a cohomologically symplectic variety is isomorphic to the projective space provided that the base space is smooth.
引用
收藏
页码:531 / 542
页数:12
相关论文
共 50 条
  • [21] Lagrangian Fibrations
    Huybrechts, D.
    Mauri, M.
    MILAN JOURNAL OF MATHEMATICS, 2022, 90 (02) : 459 - 483
  • [22] Lagrangian Fibrations
    D. Huybrechts
    M. Mauri
    Milan Journal of Mathematics, 2022, 90 : 459 - 483
  • [23] Classification of Lagrangian fibrations
    Kozlov, I. K.
    SBORNIK MATHEMATICS, 2010, 201 (11) : 1647 - 1688
  • [24] Symmetries of Lagrangian fibrations
    Castano-Bernard, Ricardo
    Matessi, Diego
    Solomon, Jake P.
    ADVANCES IN MATHEMATICS, 2010, 225 (03) : 1341 - 1386
  • [25] Pseudotoric structures: Lagrangian submanifolds and Lagrangian fibrations
    Tyurin, N. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2017, 72 (03) : 513 - 546
  • [26] Fibrations on Banach manifolds
    Gutú, O
    Jaramillo, JA
    PACIFIC JOURNAL OF MATHEMATICS, 2004, 215 (02) : 313 - 329
  • [27] SPHERICAL FIBRATIONS AND MANIFOLDS
    WISSEMANNHARTMANN, C
    MATHEMATISCHE ZEITSCHRIFT, 1981, 177 (02) : 187 - 192
  • [28] Lagrangian Constant Cycle Subvarieties in Lagrangian Fibrations
    Lin, Hsueh-Yung
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (01) : 14 - 24
  • [29] Special Lagrangian torus fibrations of complete intersection Calabi-Yau manifolds: A geometric conjecture
    Morrison, David R.
    Plesser, M. Ronen
    NUCLEAR PHYSICS B, 2015, 898 : 751 - 770
  • [30] On polarization types of Lagrangian fibrations
    Wieneck, Benjamin
    MANUSCRIPTA MATHEMATICA, 2016, 151 (3-4) : 305 - 327