The Doubly Stochastic Single Eigenvalue Problem: A Computational Approach

被引:4
|
作者
Harlev, Amit [1 ]
Johnson, Charles R. [2 ]
Lim, Derek [3 ]
机构
[1] Harvey Mudd Univ, Dept Math, Claremont, CA USA
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[3] Cornell Univ, Dept Math, White Hall, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Doubly stochastic matrix; Eigenvalue; Group representation; Permutation matrix; Single eigenvalue problem;
D O I
10.1080/10586458.2020.1727799
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of determining DSn, the complex numbers that occur as an eigenvalue of an n-by-n doubly stochastic matrix, has been a target of study for some time. The Perfect-Mirsky region, PMn, is contained in DSn and is known to be exactly DSn for but strictly contained within DSn for n = 5. Here, we present a Boundary Conjecture that asserts that the boundary of DSn is achieved by eigenvalues of convex combinations of pairs of (or single) permutation matrices. We present a method to efficiently compute a portion of DSn and obtain computational results that support the Boundary Conjecture. We also give evidence that DSn is equal to PMn for certain n > 5.
引用
收藏
页码:936 / 945
页数:10
相关论文
共 50 条
  • [21] Symmetric stochastic inverse eigenvalue problem
    Zhang, Quanbing
    Xu, Changqing
    Yang, Shangjun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [22] The Inverse Eigenvalue Problem for Symmetric Doubly Arrow Matrices
    Wang, Kanming
    Liu, Zhibing
    Fei, Xuyun
    ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2, 2014, 444-445 : 625 - 627
  • [23] An Inverse Eigenvalue Problem for Symmetric Doubly Arrow Matrices
    Xu, Chengfeng
    Liu, Zhibing
    Wang, Kanming
    2010 INTERNATIONAL CONFERENCE ON INFORMATION, ELECTRONIC AND COMPUTER SCIENCE, VOLS 1-3, 2010, : 629 - 632
  • [24] Doubly Stochastic Sequential Assignment Problem
    Khatibi, Arash
    Jacobson, Sheldon H.
    NAVAL RESEARCH LOGISTICS, 2016, 63 (02) : 124 - 137
  • [25] A LABORATORY APPROACH TO AN EIGENVALUE PROBLEM
    CLENDENNING, LM
    AMERICAN JOURNAL OF PHYSICS, 1968, 36 (10) : 879 - +
  • [26] A computational method for the inverse transmission eigenvalue problem
    Gintides, Drossos
    Pallikarakis, Nikolaos
    INVERSE PROBLEMS, 2013, 29 (10)
  • [27] Eigenvalue problem of a beam on stochastic vlasov foundation
    Kaleta, B.
    Zembaty, Z.
    Archives of Civil Engineering, 2007, 53 (03) : 447 - 477
  • [28] LIMIT DISTRIBUTION THEOREM FOR STOCHASTIC EIGENVALUE PROBLEM
    PURKERT, W
    VOMSCHEIDT, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1979, 59 (11): : 611 - 623
  • [29] Extremal inverse eigenvalue problem for symmetric doubly arrow matrices
    Liu Z.
    Wang K.
    Xu C.
    Journal of Applied Mathematics and Computing, 2014, 45 (1-2) : 151 - 164
  • [30] An inverse problem for symmetric doubly stochastic matrices
    Mourad, B
    INVERSE PROBLEMS, 2003, 19 (04) : 821 - 831