High-Pressure Tetrahedral Amorphous Carbon Synthesized by Compressing Glassy Carbon at Room Temperature

被引:16
|
作者
Tan, Lijie [1 ,2 ]
Sheng, Hongwei [1 ]
Lou, Hongbo [1 ]
Cheng, Benyuan [1 ,3 ]
Xuan, Yuanyuan [1 ]
Prakapenka, Vitali B. [4 ]
Greenberg, Eran [4 ]
Zeng, Qiaoshi [1 ,5 ]
Peng, Fang [2 ]
Zeng, Zhidan [1 ]
机构
[1] Ctr High Pressure Sci & Technol Adv Res HPSTAR, Shanghai 201203, Peoples R China
[2] Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China
[3] Shanghai Inst Laser Plasma, Shanghai 201800, Peoples R China
[4] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA
[5] Southeast Univ, Sch Mat Sci & Engn, Jiangsu Key Lab Adv Metall Mat, Nanjing 211189, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2020年 / 124卷 / 09期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
DIAMOND; STRESS; FILMS; PHASE;
D O I
10.1021/acs.jpcc.0c00247
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tetrahedral amorphous carbon(ta-C) thin films with high sp(3) fraction have extraordinary mechanical properties and wide applications. Despite intensive effort to increase the thickness of ta-C thin films in the past decades, bulk ta-C has not been achieved until date. In this study, by compressing a sp(2)-bonded amorphous carbon (glassy carbon) up to 93 GPa, we demonstrate that the formation of bulk ta-C is possible at high pressures and room temperature. We studied the atomic structure, stability, and mechanical properties of the ta-C synthesized under high pressure using in situ high-pressure X-ray diffraction and large-scale first-principles calculations. The high-pressure ta-C is mainly tetrahedrally bonded, with relatively large distortions in the sp(3) C-C bonds. It can be preserved to approximately 8.5 GPa during pressure release, below which it transforms to disordered glassy carbon, accompanied by sp(3)-to-sp(2) transition. Moreover, both the experiment and simulation show that the high-pressure ta-C has a high bulk modulus (363 +/- 29 GPa, experimental) even comparable to diamond. These results deepen our understanding of amorphous carbon and help guide the synthesis of novel carbon materials using high pressure.
引用
收藏
页码:5489 / 5494
页数:6
相关论文
共 50 条
  • [41] A transformation of carbon dioxide to nonmolecular solid at room temperature and high pressure
    Kume, Tetsuji
    Ohya, Yasuhisa
    Nagata, Masayuki
    Sasaki, Shigeo
    Shimizu, Hiroyasu
    Journal of Applied Physics, 2007, 102 (05):
  • [42] Tetrahedral amorphous carbon properties and applications
    McKenzie, D.R.
    Yin, Y.
    Marks, N.A.
    Davis, C.A.
    Kravtchinskaia, E.
    Journal of Non-Crystalline Solids, 1993, 164-66 (pt 2) : 1101 - 1106
  • [43] Electrode properties of tetrahedral amorphous carbon
    Evstefeeva, YE
    Pleskov, YV
    Kutsay, AM
    Bello, I
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2005, 41 (07) : 772 - 777
  • [44] THERMOELECTRIC POWER OF GLASSY CARBON AT HIGH TEMPERATURE
    YAMAGUCHI, T
    CARBON, 1964, 1 (04) : 535 - 536
  • [45] Doping mechanism in tetrahedral amorphous carbon
    Chen, CW
    Robertson, J
    COVALENTLY BONDED DISORDERED THIN-FILM MATERIALS, 1998, 498 : 31 - 36
  • [46] Nanocrystallites in tetrahedral amorphous carbon films
    Ravi, S
    Silva, P
    Xu, S
    Tay, BX
    Tan, HS
    Milne, WI
    APPLIED PHYSICS LETTERS, 1996, 69 (04) : 491 - 493
  • [47] Doping mechanism in tetrahedral amorphous carbon
    Engineering Department, Cambridge University, Cambridge CB2 1PZ, United Kingdom
    Carbon, 5 (839-842):
  • [48] Mechanical dissipation in tetrahedral amorphous carbon
    Czaplewski, D.A.
    Sullivan, J.P.
    Friedmann, T.A.
    Carr, D.W.
    Keeler, B.E.N.
    Wendt, J.R.
    Journal of Applied Physics, 2005, 97 (02):
  • [49] Wettability of hydrogenated tetrahedral amorphous carbon
    Piazza, F.
    Morell, G.
    DIAMOND AND RELATED MATERIALS, 2009, 18 (01) : 43 - 50
  • [50] Haemocompatibility of tetrahedral amorphous carbon films
    Yu, LJ
    Wang, X
    Wang, XH
    Liu, XH
    SURFACE & COATINGS TECHNOLOGY, 2000, 128 : 484 - 488