A latent unknown clustering integrating multi-omics data (LUCID) with phenotypic traits

被引:19
|
作者
Peng, Cheng [1 ]
Wang, Jun [1 ]
Asante, Isaac [2 ]
Louie, Stan [2 ]
Jin, Ran [1 ]
Chatzi, Lida [1 ]
Casey, Graham [3 ]
Thomas, Duncan C. [1 ]
Conti, David, V [1 ]
机构
[1] Univ Southern Calif, Dept Prevent Med, Keck Sch Med, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Sch Pharm, Dept Clin Pharm, Los Angeles, CA 90089 USA
[3] Univ Virginia, Ctr Publ Hlth Genom, Dept Publ Hlth Sci, Charlottesville, VA 22908 USA
基金
美国国家卫生研究院;
关键词
GENOME-WIDE ASSOCIATION; GENETIC ASSOCIATION; MASS-SPECTROMETRY; CANCER; SELECTION; METABOLOMICS; REGRESSION; DISEASE; BREAST; CTNNA3;
D O I
10.1093/bioinformatics/btz667
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Epidemiologic, clinical and translational studies are increasingly generating multiplatform omics data. Methods that can integrate across multiple high-dimensional data types while accounting for differential patterns are critical for uncovering novel associations and underlying relevant subgroups. Results: We propose an integrative model to estimate latent unknown clusters (LUCID) aiming to both distinguish unique genomic, exposure and informative biomarkers/omic effects while jointly estimating subgroups relevant to the outcome of interest. Simulation studies indicate that we can obtain consistent estimates reflective of the true simulated values, accurately estimate subgroups and recapitulate subgroup-specific effects. We also demonstrate the use of the integrated model for future prediction of risk subgroups and phenotypes. We apply this approach to two real data applications to highlight the integration of genomic, exposure and metabolomic data.
引用
收藏
页码:842 / 850
页数:9
相关论文
共 50 条
  • [1] An extension of latent unknown clustering integrating multi-omics data (LUCID) incorporating incomplete omics data
    Zhao, Yinqi
    Jia, Qiran
    Goodrich, Jesse
    Darst, Burcu
    Conti, David, V
    [J]. BIOINFORMATICS ADVANCES, 2024, 4 (01):
  • [2] LUCID: An Integrative Clustering Model for Multi Omics Data
    Zhao, Yinqi
    Conti, David V.
    [J]. GENETIC EPIDEMIOLOGY, 2022, 46 (07) : 550 - 550
  • [3] Integration of multi-omics data for prediction of phenotypic traits using random forest
    Animesh Acharjee
    Bjorn Kloosterman
    Richard G. F. Visser
    Chris Maliepaard
    [J]. BMC Bioinformatics, 17
  • [4] Integration of multi-omics data for prediction of phenotypic traits using random forest
    Acharjee, Animesh
    Kloosterman, Bjorn
    Visser, Richard G. F.
    Maliepaard, Chris
    [J]. BMC BIOINFORMATICS, 2016, 17
  • [5] Integrating multi-omics data for crop improvement
    Scossa, Federico
    Alseekh, Saleh
    Fernie, Alisdair R.
    [J]. JOURNAL OF PLANT PHYSIOLOGY, 2021, 257
  • [6] Integrative clustering methods for multi-omics data
    Zhang, Xiaoyu
    Zhou, Zhenwei
    Xu, Hanfei
    Liu, Ching-Ti
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2022, 14 (03)
  • [7] Representation Learning for the Clustering of Multi-Omics Data
    Viaud, Gautier
    Mayilvahanan, Prasanna
    Cournede, Paul-Henry
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (01) : 135 - 145
  • [8] On a novel statistical method for integrating multi-omics data
    Das, Sarmistha
    Mukhopadhyay, Indranil
    [J]. GENETIC EPIDEMIOLOGY, 2020, 44 (05) : 506 - 506
  • [9] Approaches to Integrating Metabolomics and Multi-Omics Data: A Primer
    Jendoubi, Takoua
    [J]. METABOLITES, 2021, 11 (03)
  • [10] Spectral clustering of weighted variables on multi-omics data
    Lee, Yunjung
    Park, Seyoung
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2023, 36 (03) : 175 - 196