Motivation Latent unknown clustering integrating multi-omics data is a novel statistical model designed for multi-omics data analysis. It integrates omics data with exposures and an outcome through a latent cluster, elucidating how exposures influence processes reflected in multi-omics measurements, ultimately affecting an outcome. A significant challenge in multi-omics analysis is the issue of list-wise missingness. To address this, we extend the model to incorporate list-wise missingness within an integrated imputation framework, which can also handle sporadic missingness when necessary.Results Simulation studies demonstrate that our integrated imputation approach produces consistent and less biased estimates, closely reflecting true underlying values. We applied this model to data from the ISGlobal/ATHLETE "Exposome Data Challenge Event" to explore the association between maternal exposure to hexachlorobenzene and childhood body mass index by integrating incomplete proteomics data from 1301 children. The model successfully estimated proteomics profiles for two clusters representing higher and lower body mass index, characterizing the potential profiles linking prenatal hexachlorobenzene levels and childhood body mass index.Availability and implementation The proposed methods have been implemented in the R package LUCIDus. The source code is available at https://github.com/USCbiostats/LUCIDus.
机构:
Univ Southern Calif, Div Biostat, Dept Populat & Publ Hlth Sci, Los Angeles, CA USAUniv Southern Calif, Div Biostat, Dept Populat & Publ Hlth Sci, Los Angeles, CA USA
Zhao, Yinqi
Conti, David V.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Calif, Div Biostat, Dept Populat & Publ Hlth Sci, Los Angeles, CA USAUniv Southern Calif, Div Biostat, Dept Populat & Publ Hlth Sci, Los Angeles, CA USA
机构:
Univ Paris Saclay, Cent Supelec, Math & Informat Complexite & Syst, F-91190 Gif Sur Yvette, FranceUniv Paris Saclay, Cent Supelec, Math & Informat Complexite & Syst, F-91190 Gif Sur Yvette, France
Viaud, Gautier
Mayilvahanan, Prasanna
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, Cent Supelec, Math & Informat Complexite & Syst, F-91190 Gif Sur Yvette, FranceUniv Paris Saclay, Cent Supelec, Math & Informat Complexite & Syst, F-91190 Gif Sur Yvette, France
机构:
Sungkyunkwan Univ, Dept Stat, 25-2 Seonggyungwan Ro, Seoul 03063, South KoreaSungkyunkwan Univ, Dept Stat, 25-2 Seonggyungwan Ro, Seoul 03063, South Korea
Lee, Yunjung
Park, Seyoung
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Dept Stat, 25-2 Seonggyungwan Ro, Seoul 03063, South KoreaSungkyunkwan Univ, Dept Stat, 25-2 Seonggyungwan Ro, Seoul 03063, South Korea