Instantons on Calabi-Yau and hyper-Kahler cones

被引:1
|
作者
Geipel, Jakob C. [1 ]
Sperling, Marcus [2 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, Appelstr 2, D-30167 Hannover, Germany
[2] Univ Wien, Fak Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
来源
基金
奥地利科学基金会;
关键词
Solitons Monopoles and Instantons; Differential and Algebraic Geometry; Gauge Symmetry; PRINCIPAL NILPOTENT PAIRS; NAHMS EQUATIONS; CLASSIFICATION; CONNECTIONS; TOPOLOGY; GEOMETRY; FIELDS;
D O I
10.1007/JHEP10(2017)103
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The instanton equations on vector bundles over Calabi-Yau and hyper- Kahler cones can be reduced to matrix equations resembling Nahm's equations. We complement the discussion of Hermitian Yang-Mills (HYM) equations on Calabi-Yau cones, based on regular semi-simple elements, by a new set of ( singular) boundary conditions which have a known instanton solution in one direction. This approach extends the classic results of Kronheimer by probing a relation between generalised Nahm's equations and nilpotent pairs/tuples. Moreover, we consider quaternionic instantons on hyper- Kahler cones over generic 3-Sasakian manifolds and study the HYM moduli spaces arising in this set-up, using the fact that their analysis can be traced back to the intersection of three Hermitian Yang-Mills conditions.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] CALABI-YAU COALGEBRAS
    He, J-W
    Torrecillas, B.
    Van Oystaeyen, F.
    Zhang, Y.
    [J]. COMMUNICATIONS IN ALGEBRA, 2011, 39 (12) : 4644 - 4661
  • [42] ON TORIC HYPER-KAHLER MANIFOLDS GIVEN BY THE HYPER-KAHLER QUOTIENT METHOD
    GOTO, R
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 : 317 - 338
  • [43] On the stability of compact pseudo-Kahler and neutral Calabi-Yau manifolds
    Latorre, Adela
    Ugarte, Luis
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 145 : 240 - 262
  • [44] Kahler potentials of chiral matter fields for Calabi-Yau string compactifications
    Conlon, Joseph P.
    Cremades, Daniel
    Quevedo, Fernando
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2007, (01):
  • [45] CONICAL CALABI-YAU METRICS ON TORIC AFFINE VARIETIES AND CONVEX CONES
    Berman, Robert J.
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2023, 125 (02) : 345 - 377
  • [46] The Calabi-Yau equation on almost-Kahler four-manifolds
    Weinkove, Ben
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2007, 76 (02) : 317 - 349
  • [47] Complete Calabi-Yau metrics from smoothing Calabi-Yau complete intersections
    Firester, Benjy J.
    [J]. GEOMETRIAE DEDICATA, 2024, 218 (02)
  • [48] Gauge theory dynamics and Kahler potential for Calabi-Yau complex moduli
    Doroud, Nima
    Gomis, Jaume
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (12): : 1 - 35
  • [49] On the cohomology of Kahler and hyper-Kahler manifolds
    Salamon, SM
    [J]. TOPOLOGY, 1996, 35 (01) : 137 - 155
  • [50] Mesonic chiral rings in Calabi-Yau cones from field theory
    Grant, Lars
    Narayan, K.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (04)