Local Laws for Sparse Sample Covariance Matrices

被引:1
|
作者
Tikhomirov, Alexander N. [1 ]
Timushev, Dmitry A. [1 ]
机构
[1] RAS, Ural Branch, Komi Sci Ctr, Inst Phys & Math, Syktyvkar 167982, Russia
关键词
sparse sample covariance matrices; local Marchenko-Pastur law; Stieltjes transformation; SPECTRAL STATISTICS; EIGENVALUE;
D O I
10.3390/math10132326
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We proved the local Marchenko-Pastur law for sparse sample covariance matrices that corresponded to rectangular observation matrices of order n x m with n/m -> y (where y > 0) and sparse probability np(n) > log(beta) n (where beta > 0). The bounds of the distance between the empirical spectral distribution function of the sparse sample covariance matrices and the Marchenko-Pastur law distribution function that was obtained in the complex domain z is an element of D with Im z > v(0) > 0 (where v(0)) were of order log(4) n/n and the domain bounds did not depend on p(n) while np(n) > log(beta) n.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] Local Laws for Sparse Sample Covariance Matrices Without the Truncation Condition
    F. Götze
    A. N. Tikhomirov
    D. A. Timushev
    [J]. Journal of Mathematical Sciences, 2024, 286 (5) : 668 - 683
  • [2] Isotropic local laws for sample covariance and generalized Wigner matrices
    Bloemendal, Alex
    Erdos, Laszlo
    Knowles, Antti
    Yau, Horng-Tzer
    Yin, Jun
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19
  • [3] LOCAL LAW AND TRACY-WIDOM LIMIT FOR SPARSE SAMPLE COVARIANCE MATRICES
    Hwang, Jong Yun
    Lee, Ji Oon
    Schnelli, Kevin
    [J]. ANNALS OF APPLIED PROBABILITY, 2019, 29 (05): : 3006 - 3036
  • [4] Spectral density of sparse sample covariance matrices
    Nagao, Taro
    Tanaka, Toshiyuki
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (19) : 4973 - 4987
  • [5] On universality of bulk local regime of the Hermitian sample covariance matrices
    Shcherbina, Tatyana
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (10)
  • [6] Universality of local eigenvalue statistics for some sample covariance matrices
    Ben Arous, G
    Péché, S
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (10) : 1316 - 1357
  • [7] ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES
    Fan, Jianqing
    Rigollet, Philippe
    Wang, Weichen
    [J]. ANNALS OF STATISTICS, 2015, 43 (06): : 2706 - 2737
  • [8] Factored sparse inverse covariance matrices
    Bilmes, JA
    [J]. 2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 1009 - 1012
  • [9] CONVERGENCE RATE TO THE TRACY-WIDOM LAWS FOR THE LARGEST EIGENVALUE OF SAMPLE COVARIANCE MATRICES
    Schnelli, Kevin
    Xu, Yuanyuan
    [J]. ANNALS OF APPLIED PROBABILITY, 2023, 33 (01): : 677 - 725
  • [10] LIMITING LAWS FOR DIVERGENT SPIKED EIGENVALUES AND LARGEST NONSPIKED EIGENVALUE OF SAMPLE COVARIANCE MATRICES
    Cai, T. Tony
    Han, Xiao
    Pan, Guangming
    [J]. ANNALS OF STATISTICS, 2020, 48 (03): : 1255 - 1280