Infinite families of MDR cyclic codes over Z4 via constacyclic codes over Z4[u]/⟨u2-1⟩

被引:3
|
作者
Han, Nayoung [1 ]
Kim, Bohyun [1 ]
Kim, Boran [2 ]
Lee, Yoonjin [1 ]
机构
[1] Ewha Womans Univ, Dept Math, Seoul 03760, South Korea
[2] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
Cyclic code; MDR code; Constacyclic code; Frobenius non-chain ring; Gray map; GALOIS RINGS;
D O I
10.1016/j.disc.2019.111771
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study alpha-constacyclic codes over the Frobenius non-chain ring R := Z(4)[u]/< u(2) - 1 > for any unit alpha of R. We obtain new MDR cyclic codes over Z(4) using a close connection between alpha-constacyclic codes over R and cyclic codes over Z(4). We first explicitly determine generators of all alpha-constacyclic codes over R of odd length n for any unit alpha of R. We then explicitly obtain generators of cyclic codes over Z(4) of length 2n by using a Gray map associated with the unit alpha. This leads to a construction of infinite families of MDR cyclic codes over Z(4), where a MDR code means a maximum distance with respect to rank code in terms of the Hamming weight or the Lee weight. We obtain 202 new cyclic codes over Z(4) of lengths 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50 and 54 by implementing our results in Magma software; some of them are also MDR codes with respect to the Hamming weight or the Lee weight. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Greedy Codes over Z4
    Guenda, Kenza
    Gulliver, T. Aaron
    Sheikholeslam, S. Arash
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [22] On LCD codes over Z4
    Bhowmick, Sanjit
    Bagchi, Satya
    Bandi, Ramakrishna
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [23] Cyclic codes over a linear companion of Z4
    Udaya, P
    Bonnecaze, A
    1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 398 - 398
  • [24] Reversible complement cyclic codes over Z4
    Klin-Earn, Chakkrid
    Sriwirach, Wateekorn
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (07)
  • [25] Cyclic codes over Z4 of even length
    Dougherty, ST
    Ling, S
    DESIGNS CODES AND CRYPTOGRAPHY, 2006, 39 (02) : 127 - 153
  • [26] Cyclic codes over Z4 + uZ4
    Bandi, Rama Krishna
    Bhaintwal, Maheshanand
    2015 SEVENTH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS (IWSDA), 2015, : 47 - 51
  • [27] Cyclic codes of even length over Z4
    Woo, Sung Sik
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (03) : 697 - 706
  • [28] Shadow codes over Z4
    Dougherty, ST
    Harada, M
    Solé, P
    FINITE FIELDS AND THEIR APPLICATIONS, 2001, 7 (04) : 507 - 529
  • [29] QUADRATIC RESIDUE CODES OVER Z4 + u1Z4 + ... + utZ4 AND QUANTUM CODES FROM THESE CODES
    Karbaski, Arezoo Soufi
    Samei, Karim
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (03): : 111 - 122
  • [30] Maximum distance separable codes over Z4 and Z2 x Z4
    Bilal, M.
    Borges, J.
    Dougherty, S. T.
    Fernandez-Cordoba, C.
    DESIGNS CODES AND CRYPTOGRAPHY, 2011, 61 (01) : 31 - 40