Virus Sensor RIG-I Represses RNA Interference by Interacting with TRBP through LGP2 in Mammalian Cells

被引:20
|
作者
Takahashi, Tomoko [1 ]
Nakano, Yuko [1 ]
Onomoto, Koji [2 ]
Yoneyama, Mitsutoshi [2 ]
Ui-Tei, Kumiko [1 ,3 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Biol Sci, Tokyo 1130033, Japan
[2] Chiba Univ, Med Mycol Res Ctr, Div Mol Immunol, Chiba 2608673, Japan
[3] Univ Tokyo, Grad Sch Frontier Sci, Dept Computat Biol & Med Sci, Chiba 2778561, Japan
基金
日本科学技术振兴机构;
关键词
RNA interference; RLRs; RIG-I; LGP2; TRBP; virus sensor; dsRNA; DOUBLE-STRANDED-RNA; BINDING-PROTEIN; ANTIVIRAL IMMUNITY; NUCLEAR EXPORT; RECOGNITION; HELICASE; DICER; SIRNA; INHIBITION; ACTIVATION;
D O I
10.3390/genes9100511
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Exogenous double-stranded RNAs (dsRNAs) similar to viral RNAs induce antiviral RNA silencing or RNA interference (RNAi) in plants or invertebrates, whereas interferon (IFN) response is induced through activation of virus sensor proteins including Toll like receptor 3 (TLR3) or retinoic acid-inducible gene I (RIG-I) like receptors (RLRs) in mammalian cells. Both RNA silencing and IFN response are triggered by dsRNAs. However, the relationship between these two pathways has remained unclear. Laboratory of genetics and physiology 2 (LGP2) is one of the RLRs, but its function has remained unclear. Recently, we reported that LGP2 regulates endogenous microRNA-mediated RNA silencing by interacting with an RNA silencing enhancer, TAR-RNA binding protein (TRBP). Here, we investigated the contribution of other RLRs, RIG-I and melanoma-differentiation-associated gene 5 (MDA5), in the regulation of RNA silencing. We found that RIG-I, but not MDA5, also represses short hairpin RNA (shRNA)-induced RNAi by type-I IFN. Our finding suggests that RIG-I, but not MDA5, interacts with TRBP indirectly through LGP2 to function as an RNAi modulator in mammalian cells.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity
    Yoneyama, M
    Kikuchi, M
    Matsumoto, K
    Imaizumi, T
    Miyagishi, M
    Taira, K
    Foy, E
    Loo, YM
    Gale, M
    Akira, S
    Yonehara, S
    Kato, A
    Fujita, T
    JOURNAL OF IMMUNOLOGY, 2005, 175 (05): : 2851 - 2858
  • [22] Regulation and function of the cytosolic viral RNA sensor RIG-I in pancreatic beta cells
    Garcia, Monica
    Dogusan, Zeynep
    Moore, Fabrice
    Sato, Shintaro
    Hartmann, Gunther
    Eizirik, Decio L.
    Rasschaert, Joanne
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2009, 1793 (11): : 1768 - 1775
  • [23] The viral RNA recognition sensor RIG-I is degraded during encephalomyocarditis virus (EMCV) infection
    Papon, Laura
    Oteiza, Alexandra
    Imaizumi, Tadaatsu
    Kato, Hiroki
    Brocchi, Emiliana
    Lawson, T. Glen
    Akira, Shizuo
    Mechti, Nadir
    VIROLOGY, 2009, 393 (02) : 311 - 318
  • [24] The RNA Sensor RIG-I Dually Functions as an Innate Sensor and Direct Antiviral Factor for Hepatitis B Virus
    Sato, Seiichi
    Li, Kai
    Kameyama, Takeshi
    Hayashi, Takaya
    Ishida, Yuji
    Murakami, Shuko
    Watanabe, Tsunamasa
    Iijima, Sayuki
    Sakurai, Yu
    Watashi, Koichi
    Tsutsumi, Susumu
    Sato, Yusuke
    Akita, Hidetaka
    Wakita, Takaji
    Rice, Charles M.
    Harashima, Hideyoshi
    Kohara, Michinori
    Tanaka, Yasuhito
    Takaoka, Akinori
    IMMUNITY, 2015, 42 (01) : 123 - 132
  • [25] Solution Structures of Cytosolic RNA Sensor MDA5 and LGP2 C-terminal Domains IDENTIFICATION OF THE RNA RECOGNITION LOOP IN RIG-I-LIKE RECEPTORS
    Takahasi, Kiyohiro
    Kumeta, Hiroyuki
    Tsuduki, Natsuko
    Narita, Ryo
    Shigemoto, Taeko
    Hirai, Reiko
    Yoneyama, Mitsutoshi
    Horiuchi, Masataka
    Ogura, Kenji
    Fujita, Takashi
    Inagaki, Fuyuhiko
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (26) : 17465 - 17474
  • [26] Function conservation and disparities of zebrafish and human LGP2 genes in fish and mammalian cells responsive to poly(I:C)
    Gong, Xiu-Ying
    Qu, Zi-Ling
    Li, Yi-Lin
    Sun, Hao-Yu
    Zhao, Xiang
    Dan, Cheng
    Gui, Jian-Fang
    Zhang, Yi-Bing
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [27] Nonencapsidated 5′ Copy-Back Defective Interfering Genomes Produced by Recombinant Measles Viruses Are Recognized by RIG-I and LGP2 but Not MDA5
    Mura, Marie
    Combredet, Chantal
    Najburg, Valerie
    David, Raul Y. Sanchez
    Tangy, Frederic
    Komarova, Anastassia V.
    JOURNAL OF VIROLOGY, 2017, 91 (20)
  • [28] Role of LGP2, a cytoplasmic RIG-I-like helicase, on neuronal innate immune gene expression during rabies virus infection
    Chopy, Damien
    Pothlichet, Julien
    Megret, Francoise
    Lafage, Mireille
    Vives, Francina Langa
    Charneau, Pierre
    Balloy, Viviane
    Si-Tahar, Mustapha
    Lafon, Monique
    JOURNAL OF NEUROVIROLOGY, 2009, 15 : 17 - 17
  • [29] RNA sensing via the RIG-I-like receptor LGP2 is essential for the induction of a type I IFN response in ADAR1 deficiency
    Stok, Jorn E.
    Oosenbrug, Timo
    ter Haar, Laurens R.
    Gravekamp, Dennis
    Bromley, Christian P.
    Zelenay, Santiago
    Reis e Sousa, Caetano
    van der Veen, Annemarthe G.
    EMBO JOURNAL, 2022, 41 (06):
  • [30] Amino Acid Requirements for MDA5 and LGP2 Recognition by Paramyxovirus V Proteins: a Single Arginine Distinguishes MDA5 from RIG-I
    Rodriguez, Kenny R.
    Horvath, Curt M.
    JOURNAL OF VIROLOGY, 2013, 87 (05) : 2974 - 2978