Asymptotic behavior of generalized quadratic mappings

被引:0
|
作者
Kim, Hark-Mahn [1 ]
Chang, Ick-Soon [1 ]
机构
[1] Chungnam Natl Univ, Dept Math, 99 Daehangno, Daejeon 34134, South Korea
来源
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS | 2021年 / 12卷 / 01期
关键词
Stability; Parallel polyhedron equality; Generalized quadratic mappings; HYERS-ULAM STABILITY; FUNCTIONAL-EQUATIONS;
D O I
10.22075/ijnaa.2021.4982
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show in this paper that a mapping f satisfies the following functional equation (sic)(x2,center dot center dot center dot ,xd)(+1) f(x(1)) = 2d Sigma(d +1)(i=1)f(x(i)), if and only if it is quadratic. In addition, we investigate generalized Hyers-Ulam stability problem for the equation, and thus obtain an asymptotic property of quadratic mappings as applications.
引用
收藏
页码:1153 / 1165
页数:13
相关论文
共 50 条
  • [31] Asymptotic Behavior of a Periodic Sequence of Nonexpansive Mappings with Applications
    Hashemi, Mehrnaz Sadat
    Khatibzadeh, Hadi
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2023, 30 (01) : 79 - 90
  • [32] Asymptotic behavior of generalized quasiisometries at a point
    D. A. Kovtonyuk
    R. R. Salimov
    Ukrainian Mathematical Journal, 2011, 63 : 555 - 563
  • [33] Asymptotic Behavior of Generalized Risk Processes
    V. E. Bening
    V. Yu. Korolev
    Li Xin Liu
    Acta Mathematica Sinica, 2004, 20 : 349 - 356
  • [34] Asymptotic behavior of generalized risk processes
    Bening, VE
    Korolev, VY
    Liu, LX
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (02) : 349 - 356
  • [35] On the generalized Hyers-Ulam stability of multi-quadratic mappings
    Cieplinski, Krzysztof
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (09) : 3418 - 3426
  • [36] ON THE ASYMPTOTIC BEHAVIOR OF A GENERALIZED NONLINEAR EQUATION
    Napoles Valdes, Juan E.
    Quevedo Cubillos, Maria Nubia
    Gomez Plata, Adrian R.
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2020, 38 (04): : 2109 - 2121
  • [37] The Asymptotic Behavior for Generalized Jirina Process
    Lv, You
    Huang, Huaping
    AXIOMS, 2023, 12 (01)
  • [38] On Asymptotic Behavior of Generalized Li Coefficients
    Ernvall-Hytonen, Anne-Maria
    Odzak, Almasa
    Susic, Medina
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (06): : 1321 - 1346
  • [39] ASYMPTOTIC BEHAVIOR OF GENERALIZED QUASIISOMETRIES AT A POINT
    Kovtonyuk, D. A.
    Salimov, R. R.
    UKRAINIAN MATHEMATICAL JOURNAL, 2011, 63 (04) : 555 - 563
  • [40] Asymptotic Behavior of Generalized Risk Processes
    V.E.BENING
    V.Yu.KOROLEV
    Acta Mathematica Sinica(English Series), 2004, 20 (02) : 349 - 356