Generalized Suzuki (ψ, φ)-contraction in complete metric spaces

被引:0
|
作者
Mebawondu, A. A. [1 ]
Mebawondu, S. I. [2 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
[2] Lagos State Univ, Ojo Campus, Lagos, Nigeria
关键词
(psi; phi)-Suzuki-type mapping; fixed point; phi)-Jungck-Suzuki; coincidence point; metric space; FIXED-POINT THEOREMS; CONTRACTIONS; MAPS;
D O I
10.22075/ijnaa.2020.15983.1837
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new class of mappings called the (psi, phi)-Suzuki-type mapping and (psi, phi)-Jungck-Suzuki contraction type mappings and we establish the existence, uniqueness and coincidence results for (psi, phi)-Suzuki-type mapping and (psi, phi)-Jungck-Suzuki contraction mappings in the frame work of complete metric spaces. Furthermore, we applied our results to the existence and uniqueness of solutions of a differential equation. Our results improve, extend and generalize some known results in the literature.
引用
收藏
页码:963 / 978
页数:16
相关论文
共 50 条
  • [21] Fixed fuzzy point results of generalized Suzuki type F-contraction mappings in ordered metric spaces
    Saleem, Naeem
    Abbas, Mujahid
    Raza, Zahid
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (02) : 307 - 320
  • [22] APPROXIMATE FIXED POINT THEOREMS FOR PARTIAL GENERALIZED CONVEX CONTRACTION MAPPINGS IN α-COMPLETE METRIC SPACES
    Latif, Abdul
    Sintunavarat, Wutiphol
    Ninsri, Aphinat
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (01): : 315 - 333
  • [23] θ-φ-Contraction on (α, η)-Complete Rectangular b-Metric Spaces
    Kari, Abdelkarim
    Rossafi, Mohamed
    Marhrani, El Miloudi
    Aamri, Mohamed
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2020, 2020
  • [24] A generalized Suzuki-Berinde contraction that characterizes Banach spaces
    Abbas, Mujahid
    Anjum, Rizwan
    Rakocevic, Vladimir
    [J]. JOURNAL OF APPLIED ANALYSIS, 2023, 29 (02) : 239 - 250
  • [25] Generalized contraction mapping principles in probabilistic metric spaces
    O. Hadžić
    E. Pap
    V. Radu
    [J]. Acta Mathematica Hungarica, 2003, 101 : 131 - 148
  • [26] Generalized contraction mapping principles in probabilistic metric spaces
    Hadzic, O
    Pap, E
    Radu, V
    [J]. ACTA MATHEMATICA HUNGARICA, 2003, 101 (1-2) : 131 - 148
  • [27] Generalized φ-contraction for a pair of mappings on cone metric spaces
    Razani, Abdolrahman
    Rakocevic, Vladimir
    Goodarzi, Zahra
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (22) : 8899 - 8906
  • [28] Setvalued contraction mapping principle in generalized metric spaces
    [J]. 2018, Politechnica University of Bucharest (80):
  • [29] A new type fixed point theorem for a contraction on partially ordered generalized complete metric spaces with applications
    Madjid Eshaghi Gordji
    Maryam Ramezani
    Farhad Sajadian
    Yeol Je Cho
    Choonkil Park
    [J]. Fixed Point Theory and Applications, 2014
  • [30] A new type fixed point theorem for a contraction on partially ordered generalized complete metric spaces with applications
    Gordji, Madjid Eshaghi
    Ramezani, Maryam
    Sajadian, Farhad
    Cho, Yeol Je
    Park, Choonkil
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2014,