A downscaling approach to compare COVID-19 count data from databases aggregated at different spatial scales

被引:2
|
作者
Python, Andre [1 ]
Bender, Andreas [2 ]
Blangiardo, Marta [3 ]
Illian, Janine B. [4 ]
Lin, Ying [5 ]
Liu, Baoli [6 ,7 ]
Lucas, Tim C. D. [8 ]
Tan, Siwei [9 ]
Wen, Yingying [9 ]
Svanidze, Davit [10 ]
Yin, Jianwei [1 ,9 ]
机构
[1] Zhejiang Univ, Ctr Data Sci, 866 Yuhangtang Rd, Hangzhou 310058, Zhejiang, Peoples R China
[2] Ludwig Maximilians Univ Munchen, Dept Stat, Munich, Germany
[3] Imperial Coll London, Dept Epidemiol & Biostat, London, England
[4] Univ Glasgow, Sch Math & Stat, Glasgow, Lanark, Scotland
[5] Fuzhou Univ, Coll Environm & Safety Engn, Fuzhou, Fujian, Peoples R China
[6] Zhejiang Univ, Binjiang Inst, Hangzhou, Zhejiang, Peoples R China
[7] Univ Oxford, Sch Geog & Environm, Oxford, England
[8] Univ Oxford, Big Data Inst, Nuffield Dept Med, Oxford, England
[9] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Zhejiang, Peoples R China
[10] London Sch Econ & Polit Sci, Dept Econ, London, England
基金
中国国家自然科学基金;
关键词
COVID-19; downscaling; spatially disaggregated data; GAUSSIAN COX PROCESSES; HUMIDITY; ROLES;
D O I
10.1111/rssa.12738
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
As the COVID-19 pandemic continues to threaten various regions around the world, obtaining accurate and reliable COVID-19 data is crucial for governments and local communities aiming at rigorously assessing the extent and magnitude of the virus spread and deploying efficient interventions. Using data reported between January and February 2020 in China, we compared counts of COVID-19 from near-real-time spatially disaggregated data (city level) with fine-spatial scale predictions from a Bayesian downscaling regression model applied to a reference province-level data set. The results highlight discrepancies in the counts of coronavirus-infected cases at the district level and identify districts that may require further investigation.
引用
收藏
页码:202 / 218
页数:17
相关论文
共 50 条
  • [22] Freedom of Information and Personal Confidentiality in Spatial COVID-19 Data
    Beenstock, Michael
    Felsenstein, Daniel
    JOURNAL OF OFFICIAL STATISTICS, 2021, 37 (04) : 791 - 809
  • [23] A parsimonious approach for spatial transmission and heterogeneity in the COVID-19 propagation
    Roques, L.
    Bonnefon, O.
    Baudrot, V.
    Soubeyrand, S.
    Berestycki, H.
    ROYAL SOCIETY OPEN SCIENCE, 2020, 7 (12):
  • [24] A new approach for modeling COVID-19 death data
    Farooq, Muhammad
    Qamar-uz-zaman
    Ijaz, Muhammad
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (04) : 3491 - 3499
  • [25] Promoting physical distancing during COVID-19: a systematic approach to compare behavioral interventions
    Blanken, Tessa F.
    Tanis, Charlotte C.
    Nauta, Floor H.
    Dablander, Fabian
    Zijlstra, Bonne J. H.
    Bouten, Rick R. M.
    Oostvogel, Quinten H.
    Boersma, Meier J.
    van der Steenhoven, Maya, V
    van Harreveld, Frenk
    de Wit, Sanne
    Borsboom, Denny
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [26] Transfer Learning and Data Augmentation Techniques to the COVID-19 Identification Tasks in ComParE 2021
    Casanova, Edresson
    Candido Jr, Arnaldo
    Fernandes Jr, Ricardo Corso
    Finger, Marcelo
    Stefanel Gris, Lucas Rafael
    Ponti, Moacir A.
    Pinto da Silva, Daniel Peixoto
    INTERSPEECH 2021, 2021, : 446 - 450
  • [27] Promoting physical distancing during COVID-19: a systematic approach to compare behavioral interventions
    Tessa F. Blanken
    Charlotte C. Tanis
    Floor H. Nauta
    Fabian Dablander
    Bonne J. H. Zijlstra
    Rick R. M. Bouten
    Quinten H. Oostvogel
    Meier J. Boersma
    Maya V. van der Steenhoven
    Frenk van Harreveld
    Sanne de Wit
    Denny Borsboom
    Scientific Reports, 11
  • [28] A geostatistical approach to linking geographically aggregated data from different sources
    Gotway, Carol A.
    Young, Linda J.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2007, 16 (01) : 115 - 135
  • [29] A Managerial Approach towards Modeling the Different Strains of the COVID-19 Virus Based on the Spatial GeoCity Model
    Vyklyuk, Yaroslav
    Nevinskyi, Denys
    Chopyak, Valentyna
    Skoda, Miroslav
    Golubovska, Olga
    Hazdiuk, Kateryna
    VIRUSES-BASEL, 2023, 15 (12):
  • [30] Approach from a pediatric outlook to COVID-19
    Chia Proenza, Daniel
    Gomez Conde, Santa Yarelis
    del Toro Ravelo, Laydenis Maria
    REVISTA CUBANA DE REUMATOLOGIA, 2020, 22 (02):