A downscaling approach to compare COVID-19 count data from databases aggregated at different spatial scales

被引:2
|
作者
Python, Andre [1 ]
Bender, Andreas [2 ]
Blangiardo, Marta [3 ]
Illian, Janine B. [4 ]
Lin, Ying [5 ]
Liu, Baoli [6 ,7 ]
Lucas, Tim C. D. [8 ]
Tan, Siwei [9 ]
Wen, Yingying [9 ]
Svanidze, Davit [10 ]
Yin, Jianwei [1 ,9 ]
机构
[1] Zhejiang Univ, Ctr Data Sci, 866 Yuhangtang Rd, Hangzhou 310058, Zhejiang, Peoples R China
[2] Ludwig Maximilians Univ Munchen, Dept Stat, Munich, Germany
[3] Imperial Coll London, Dept Epidemiol & Biostat, London, England
[4] Univ Glasgow, Sch Math & Stat, Glasgow, Lanark, Scotland
[5] Fuzhou Univ, Coll Environm & Safety Engn, Fuzhou, Fujian, Peoples R China
[6] Zhejiang Univ, Binjiang Inst, Hangzhou, Zhejiang, Peoples R China
[7] Univ Oxford, Sch Geog & Environm, Oxford, England
[8] Univ Oxford, Big Data Inst, Nuffield Dept Med, Oxford, England
[9] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Zhejiang, Peoples R China
[10] London Sch Econ & Polit Sci, Dept Econ, London, England
基金
中国国家自然科学基金;
关键词
COVID-19; downscaling; spatially disaggregated data; GAUSSIAN COX PROCESSES; HUMIDITY; ROLES;
D O I
10.1111/rssa.12738
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
As the COVID-19 pandemic continues to threaten various regions around the world, obtaining accurate and reliable COVID-19 data is crucial for governments and local communities aiming at rigorously assessing the extent and magnitude of the virus spread and deploying efficient interventions. Using data reported between January and February 2020 in China, we compared counts of COVID-19 from near-real-time spatially disaggregated data (city level) with fine-spatial scale predictions from a Bayesian downscaling regression model applied to a reference province-level data set. The results highlight discrepancies in the counts of coronavirus-infected cases at the district level and identify districts that may require further investigation.
引用
收藏
页码:202 / 218
页数:17
相关论文
共 50 条
  • [1] Spatial scales of COVID-19 transmission in Mexico
    Klein, Brennan
    Hartle, Harrison
    Shrestha, Munik
    Zenteno, Ana Cecilia
    Cordera, David Barros Sierra
    Nicolas-Carlock, Jose R.
    Bento, Ana, I
    Althouse, Benjamin M.
    Gutierrez, Bernardo
    Escalera-Zamudio, Marina
    Reyes-Sandoval, Arturo
    Pybus, Oliver G.
    Vespignani, Alessandro
    Diaz-Quinonez, Jose Alberto
    Scarpino, Samuel, V
    Kraemer, Moritz U. G.
    PNAS NEXUS, 2024, 3 (09):
  • [2] COVID-19 data representation in business databases
    Vaaler, Alyson
    Reiter, Lauren
    JOURNAL OF BUSINESS & FINANCE LIBRARIANSHIP, 2022, 27 (04) : 233 - 249
  • [3] Data Quality Applied to Open Databases: "COVID-19 Cases" and "COVID-19 Vaccines"
    Pasini, Ariel
    Torres, Juan Ignacio
    Esponda, Silvia
    Pesado, Patricia
    COMPUTER SCIENCE, CACIC 2021, 2022, 1584 : 297 - 311
  • [4] Spatial variogram estimation from temporally aggregated seabird count data
    Perez-Lapena, B.
    Wijnberg, K. M.
    Stein, A.
    Hulscher, S. J. M. H.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2013, 20 (03) : 353 - 375
  • [5] Spatial variogram estimation from temporally aggregated seabird count data
    B. Pérez-Lapeña
    K. M. Wijnberg
    A. Stein
    S. J. M. H. Hulscher
    Environmental and Ecological Statistics, 2013, 20 : 353 - 375
  • [6] Aggregated mobility data could help fight COVID-19
    Buckee, Caroline O.
    Balsari, Satchit
    Chan, Jennifer
    Crosas, Merce
    Dominici, Francesca
    Gasser, Urs
    Grad, Yonatan H.
    Grenfell, Bryan
    Halloran, M. Elizabeth
    Kraemer, Moritz U. G.
    Lipsitch, Marc
    Metcalf, C. Jessica E.
    Meyers, Lauren Ancel
    Perkins, T. Alex
    Santillana, Mauricio
    Scarpino, Samuel V.
    Viboud, Cecile
    Wesolowski, Amy
    Schroeder, Andrew
    SCIENCE, 2020, 368 (6487) : 145 - 146
  • [7] Spatial Opinion Mining from COVID-19 Twitter Data
    Syed, M. A.
    Decoupes, R.
    Arsevska, E.
    Roche, M.
    Teisseire, M.
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2022, 116 : S27 - S27
  • [8] Penalized composite link models for aggregated spatial count data: A mixed model approach
    Ayma, Diego
    Durban, Maria
    Lee, Dae-Jin
    Eilers, Paul H. C.
    SPATIAL STATISTICS, 2016, 17 : 179 - 198
  • [9] Quantifying the overall added value of dynamical downscaling and the contribution from different spatial scales
    Di Luca, Alejandro
    Argueeso, Daniel
    Evans, Jason P.
    de Elia, Ramon
    Laprise, Rene
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (04) : 1575 - 1590
  • [10] A multivariate statistical approach to predict COVID-19 count data with epidemiological interpretation and uncertainty quantification
    Bartolucci, Francesco
    Pennoni, Fulvia
    Mira, Antonietta
    STATISTICS IN MEDICINE, 2021, 40 (24) : 5351 - 5372