Numerical solution of Q2 evolution equation for the transversity distribution ΔTq

被引:32
|
作者
Hirai, M [1 ]
Kumano, S [1 ]
Miyama, M [1 ]
机构
[1] Saga Univ, Dept Phys, Saga 840, Japan
关键词
polarized parton distribution; transversity distribution; chiral-odd structure function; Q(2) evolution; numerical solution;
D O I
10.1016/S0010-4655(98)00028-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate a numerical solution of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) Q(2) evolution equation for the transversity distribution Delta(T)q or the structure function h(1). The leading-order (LO) and next-to-leading-order (NLO) evolution equations are studied. The renormalization scheme is MS or <M(S)over bar> in the NLO case. Dividing the variables x and Q(2) into small steps, we solve the integrodifferential equation by the Euler method in the variable Q(2) and by the Simpson method in the variable x. Numerical results indicate that accuracy is better than 1% in the region 10(-5) < x < 0.8 if more than fifty Q(2) steps and more than five hundred x steps are taken. We provide a FORTRAN program for the Q(2) evolution and devolution of the transversity distribution Delta(T)q or h(1). Using the program, we show the LO and NLO evolution results of the valence-quark distribution Delta(T)u(upsilon) + Delta(T)d(upsilon), the singlet distribution Sigma(i)(Delta(T)q(i) + Delta T (q) over bar(i)), and the flavor asymmetric distribution Delta(T)(u) over bar - Delta(T)(d) over bar. They are also compared with the longitudinal evolution results. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:150 / 166
页数:17
相关论文
共 50 条
  • [21] Q2 evolution of the electric and magnetic polarizabilities of the proton
    Sibirtsev, A.
    Blunden, P. G.
    PHYSICAL REVIEW C, 2013, 88 (06):
  • [22] The longitudinal structure function FL(x, Q2) and the gluon distribution G(x, Q2) at low x
    Das, A
    Saikia, A
    PRAMANA-JOURNAL OF PHYSICS, 1999, 53 (04): : 701 - 706
  • [23] The longitudinal structure function FL(x, Q2) and the gluon distribution G(x, Q2) at low x
    Abhijeet Das
    A Saikia
    Pramana, 1999, 53 : 701 - 706
  • [24] Longitudinal structure function FL(x, Q2) and the gluon distribution G(x, Q2) at low x
    Department of Physics, Gauhati University, Guwahati 781 014, India
    不详
    Pramana J Phys, 4 (701-706):
  • [25] ON THE NUMERICAL-SOLUTION OF THE EVOLUTION EQUATION IN QCD
    CHYLA, J
    RAMES, J
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1986, 36 (05) : 567 - 580
  • [26] A new numerical method for obtaining gluon distribution functions G(x, Q2) = xg(x, Q2), from the proton structure function F2γp (x, Q2) (vol 65, pg 1, 2010)
    Block, Martin M.
    EUROPEAN PHYSICAL JOURNAL C, 2010, 68 (3-4): : 683 - 685
  • [27] ASYMPTOTIC SOLUTIONS OF THE EVOLUTION EQUATION FOR THE POLARIZED NUCLEON STRUCTURE-FUNCTION G2(X, Q2)
    ALI, A
    BRAUN, VM
    HILLER, G
    PHYSICS LETTERS B, 1991, 266 (1-2) : 117 - 125
  • [28] High precision determination of the Q2 evolution of the Bjorken sum
    Deur, A.
    Prok, Y.
    Burkert, V.
    Crabb, D.
    Girod, F. -X.
    Griffioen, K. A.
    Guler, N.
    Kuhn, S. E.
    Kvaltine, N.
    PHYSICAL REVIEW D, 2014, 90 (01):
  • [29] Unitarized model of inclusive and diffractive DIS with Q2 evolution
    Armesto, Nestor
    Kaidalov, Alexei B.
    Salgado, Carlos A.
    Tywoniuk, Konrad
    PHYSICAL REVIEW D, 2010, 81 (07):
  • [30] Q2 evolution of generalized Baldin sum rule for the proton
    Liang, Y.
    Christy, M. E.
    Ent, R.
    Keppel, C. E.
    PHYSICAL REVIEW C, 2006, 73 (06):