Multi-scale View-based Convolutional Neural Network for Breast Cancer Classification in Ultrasound Images

被引:1
|
作者
Meng, Hui [1 ,2 ]
Li, Qingfeng [1 ,2 ]
Liu, Xuefeng [1 ,2 ]
Wang, Yong [3 ]
Niu, Jianwei [1 ,2 ]
机构
[1] Beihang Univ, Res Ctr Big Data & Computat Intelligence, Hangzhou Innovat Inst, Hangzhou 310051, Peoples R China
[2] Beihang Univ, Sch Comp Sci & Engn, Beijing 100083, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Natl Canc Ctr, Dept Diagnost Ultrasound, Beijing 100021, Peoples R China
基金
中国国家自然科学基金;
关键词
Breast cancer; ultrasound; multi-scale view; convolutional neural network (CNN); DIAGNOSIS; TECHNOLOGIES;
D O I
10.1117/12.2581918
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Breast cancer is the second leading cause of cancer-related death in women. Ultrasound imaging has been widely used for the early detection of breast cancer because of its superior ability in imaging dense breast tissue and its lack of ionizing radiation However, ultrasound imaging heavily depends on practitioners' experience and thus becomes relatively subjective. In this work, we proposed a novel multi-scale view-based convolutional neural network (MSV-CNN) to assist doctors to diagnose and improve classification accuracy. MSV-CNN takes full images, regions of interest (ROI), and the tumor regions with two times size of the ROI as input. It adopts three complementary branches to learn multi-scale view features from different views. The sub-networks in all branches have the same structure but with different parameters. The output of three branches is finally concatenated and fused by a fully connected layer for automated nodule classification. To assess the performance of our proposed network, we implemented breast ultrasound classification on the dataset containing 1560 images with benign nodules and 5367 images with malignant nodules. Furthermore, ResNet-18 models trained with different views were utilized as baselines. Experimental results showed that MSV-CNN achieved an average classification accuracy of 0.907. This preliminary study demonstrated that our proposed method is effective in the discrimination of breast nodules.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A multi-scale convolutional neural network for heartbeat classification
    Zheng, Lesong
    Zhang, Miao
    Qiu, Lishen
    Ma, Gang
    Zhu, Wenliang
    Wang, Lirong
    2021 IEEE 20TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2021), 2021, : 1488 - 1492
  • [2] Image Classification Method Based on Multi-Scale Convolutional Neural Network
    Du, Shaobo
    Li, Jing
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (10)
  • [3] Birdsong classification based on ensemble multi-scale convolutional neural network
    Jiang Liu
    Yan Zhang
    Danjv Lv
    Jing Lu
    Shanshan Xie
    Jiali Zi
    Yue Yin
    Haifeng Xu
    Scientific Reports, 12
  • [4] Birdsong classification based on ensemble multi-scale convolutional neural network
    Liu, Jiang
    Zhang, Yan
    Lv, Danjv
    Lu, Jing
    Xie, Shanshan
    Zi, Jiali
    Yin, Yue
    Xu, Haifeng
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [5] Multi-scale attention-based convolutional neural network for classification of breast masses in mammograms
    Niu, Jing
    Li, Hua
    Zhang, Chen
    Li, Dengao
    MEDICAL PHYSICS, 2021, 48 (07) : 3878 - 3892
  • [6] Ship Classification Based on Attention Mechanism and Multi-Scale Convolutional Neural Network for Visible and Infrared Images
    Ren, Yongmei
    Yang, Jie
    Guo, Zhiqiang
    Zhang, Qingnian
    Cao, Hui
    ELECTRONICS, 2020, 9 (12) : 1 - 20
  • [7] Discrimination of Breast Cancer Based on Ultrasound Images and Convolutional Neural Network
    Du, Rui
    Chen, Yanwei
    Li, Tao
    Shi, Liang
    Fei, Zhengdong
    Li, Yuefeng
    JOURNAL OF ONCOLOGY, 2022, 2022
  • [8] A Multi-view Images Classification Based on Shallow Convolutional Neural Network
    Lei, Fangyuan
    Liu, Xun
    Dai, Qingyun
    Zhao, Huimin
    Wang, Lin
    Zhou, Rongfu
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, 2020, 11691 : 23 - 33
  • [9] Breast cancer classification based on convolutional neural network and image fusion approaches using ultrasound images
    Alotaibi, Mohammed
    Aljouie, Abdulrhman
    Alluhaidan, Najd
    Qureshi, Wasem
    Almatar, Hessa
    Alduhayan, Reema
    Alsomaie, Barrak
    Almazroa, Ahmed
    HELIYON, 2023, 9 (11)
  • [10] Multi-scale convolutional neural network for automated AMD classification using retinal OCT images
    Sotoudeh-Paima, Saman
    Jodeiri, Ata
    Hajizadeh, Fedra
    Soltanian-Zadeh, Hamid
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 144