Implantation and Diffusion of Silicon Marker Layers in In0.53Ga0.47As

被引:4
|
作者
Aldridge, Henry, Jr. [1 ]
Lind, Aaron G. [1 ]
Bomberger, Cory C. [2 ]
Puzyrev, Yevgeniy [3 ,4 ]
Hatem, Christopher [5 ]
Gwilliam, Russell M. [6 ]
Zide, Joshua M. O. [2 ]
Pantelides, Sokrates T. [3 ,4 ]
Law, Mark E. [1 ]
Jones, Kevin S. [1 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[2] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
[3] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[4] Vanderbilt Univ, Dept Elect Engn & Comp Sci, 221 Kirkland Hall, Nashville, TN 37235 USA
[5] Appl Mat Inc, Gloucester, MA 01930 USA
[6] Univ Surrey, Adv Technol Inst, Ion Beam Ctr, Guildford GU2 5XH, Surrey, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
InGaAs; III-V; MBE; implantation; annealing; processing; diffusion; DOPANT DIFFUSION; SELF-DIFFUSION; SI; MECHANISMS; GE;
D O I
10.1007/s11664-016-4616-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Continued effort has been placed on maximizing activation while controlling the diffusion of silicon doping in InGaAs for present and future complementary metal-oxide semiconductor devices. In order to explore the diffusion and activation behavior, Si marker layers were grown in InGaAs on InP by molecular beam epitaxy. The nature of Si diffusion was explored using a series of isoelectronic implants to introduce excess point defects near the layer. It was observed that excess interstitials reduce the Si diffusion consistent with a vacancy-driven diffusion mechanism. A diffusion and activation model implemented in the Florida object oriented process simulator has been developed to predict silicon diffusion behavior over a variety of temperatures and times. Using current and previous experimental data and complimentary density functional theory results, the diffusion model employs the Si-III-V-III pair as the primary mechanism for silicon diffusion in InGaAs.
引用
收藏
页码:4282 / 4287
页数:6
相关论文
共 50 条
  • [1] Implantation and Diffusion of Silicon Marker Layers in In0.53Ga0.47As
    Henry Aldridge
    Aaron G. Lind
    Cory C. Bomberger
    Yevgeniy Puzyrev
    Christopher Hatem
    Russell M. Gwilliam
    Joshua M. O. Zide
    Sokrates T. Pantelides
    Mark E. Law
    Kevin S. Jones
    Journal of Electronic Materials, 2016, 45 : 4282 - 4287
  • [2] CD DIFFUSION IN IN0.53GA0.47AS
    AMBREE, P
    GRUSKA, B
    CRYSTAL RESEARCH AND TECHNOLOGY, 1989, 24 (03) : 299 - 305
  • [3] SHALLOW P+ LAYERS IN IN0.53GA0.47AS BY HG IMPLANTATION
    LHARIDON, H
    FAVENNEC, PN
    SALVI, M
    RAZEGHI, M
    ELECTRONICS LETTERS, 1985, 21 (03) : 122 - 124
  • [4] ION-IMPLANTATION OF BE IN IN0.53GA0.47AS
    TABATABAIEALAVI, K
    CHOUDHURY, ANMM
    SLATER, NJ
    FONSTAD, CG
    APPLIED PHYSICS LETTERS, 1982, 40 (06) : 517 - 519
  • [5] DIFFUSION OF CD IN INP AND IN0.53GA0.47AS
    AYTAC, S
    SCHLACHETZKI, A
    JOURNAL OF CRYSTAL GROWTH, 1983, 64 (01) : 169 - 173
  • [6] Concentration-dependent diffusion of ion-implanted silicon in In0.53Ga0.47As
    Aldridge, H. L., Jr.
    Lind, A. G.
    Law, M. E.
    Hatem, C.
    Jones, K. S.
    APPLIED PHYSICS LETTERS, 2014, 105 (04)
  • [7] Origin of coarse contrast modulations in In0.53Ga0.47As layers
    Lee, K
    Johnson, WC
    Mahajan, S
    MICROSCOPY OF SEMICONDUCTING MATERIALS 1995, 1995, 146 : 235 - 240
  • [8] Silicon and selenium implantation and activation in In0.53Ga0.47As under low thermal budget conditions
    Allan, A.
    Brammertz, G.
    Waldron, N.
    Merckling, C.
    Hellings, G.
    Lin, H. C.
    Wang, W. E.
    Meuris, M.
    Simoen, E.
    De Meyer, K.
    Heyns, M.
    MICROELECTRONIC ENGINEERING, 2011, 88 (02) : 155 - 158
  • [9] Electron mobility in In0.53Ga0.47As
    Zoul, Antonin
    Tesla electronics, 1986, 19 (3-4): : 56 - 58
  • [10] ION-IMPLANTATION OF SI AND SE DONORS IN IN0.53GA0.47AS
    PENNA, T
    TELL, B
    LIAO, ASH
    BRIDGES, TJ
    BURKHARDT, G
    JOURNAL OF APPLIED PHYSICS, 1985, 57 (02) : 351 - 354