Sensitivity analysis of optimal control problems with bang-bang controls

被引:0
|
作者
Kim, JHR [1 ]
Maurer, H [1 ]
机构
[1] Univ Munster, Inst Numer Math, D-48149 Munster, Germany
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study bang-bang control problems that depend on a parameter p. For a fixed nominal parameter p(0), it is assumed that the bang-bang control has finitely many switching points and satisfies second order sufficient conditions (SSC). SSC are formulated and checked in terms of an associated finite-dimensional optimization problem w.r.t. the switching points and the free final time. We show that the nominal optimal bang-bang control can be locally embedded into a parametric family of optimal bang-bang controls where the switching points are differentiable function of the parameter. A well known sensitivity formula from optimization [7] is used to compute the parametric sensitivity derivatives of the switching points which also allows to determine the sensitivity derivatives of the optimal state trajectories.
引用
收藏
页码:3281 / 3286
页数:6
相关论文
共 50 条
  • [21] STABILITY AND GENERICITY OF BANG-BANG CONTROLS IN AFFINE PROBLEMS
    Corella, Alberto Dominguez
    Wachsmuth, Gerd
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2024, 62 (03) : 1669 - 1689
  • [22] Holder Regularity in Bang-Bang Type Affine Optimal Control Problems
    Corella, Alberto Dominguez
    Veliov, Vladimir M.
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 306 - 313
  • [23] Error analysis of discrete approximations to bang-bang optimal control problems: the linear case
    Veliov, VM
    CONTROL AND CYBERNETICS, 2005, 34 (03): : 967 - 982
  • [24] SECOND ORDER ANALYSIS FOR BANG-BANG CONTROL PROBLEMS OF PDEs
    Casas, Eduardo
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (04) : 2355 - 2372
  • [25] Bang-bang control for a class of optimal stochastic control problems with symmetric cost functional
    Chen, Zengjing
    Feng, Xinwei
    Liu, Shuhui
    Zhang, Weihai
    AUTOMATICA, 2023, 149
  • [26] THE BANG-BANG PROPERTY OF TIME OPTIMAL CONTROLS FOR THE BURGERS EQUATION
    Kunisch, Karl
    Wang, Lijuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (09) : 3611 - 3637
  • [27] Modified bang-bang controller for maximal and minimal time optimal control problems
    Lee, Kyung-Tae
    Oh, Sang-Young
    Choi, Ho-Lim
    ASIAN JOURNAL OF CONTROL, 2020, 22 (05) : 1827 - 1839
  • [28] A modified control parametrization method for the numerical solution of bang-bang optimal control problems
    Mehrpouya, Mohammad Ali
    Fallahi, Shirin
    JOURNAL OF VIBRATION AND CONTROL, 2015, 21 (12) : 2407 - 2415
  • [29] Epsilon-Trig Regularization Method for Bang-Bang Optimal Control Problems
    Kshitij Mall
    Michael James Grant
    Journal of Optimization Theory and Applications, 2017, 174 : 500 - 517
  • [30] On the Regularity of Linear-Quadratic Optimal Control Problems with Bang-Bang Solutions
    Preininger, J.
    Scarinci, T.
    Veliov, V. M.
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 : 237 - 245