CATEGORICITY AND TOPOLOGICAL GRAPHS

被引:0
|
作者
Bankston, Paul [1 ]
机构
[1] Marquette Univ, Dept Math Stat & Comp Sci, Milwaukee, WI 53201 USA
来源
HOUSTON JOURNAL OF MATHEMATICS | 2012年 / 38卷 / 01期
关键词
Categoricity; compacta; continua; locally connected; topological graphs; ultracoproducts; co-elementary equivalence; lattice bases; COMPACT HAUSDORFF SPACES; ARCS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a topological graph; i.e., a union of finitely many points and arcs, with arcs joined only at end points. If Y is any locally connected metrizable compactum that is co-elementarily equivalent to X, then Y is homeomorphic to X. In particular, X and Y are homeomorphic if some lattice base for one is elementarily equivalent to some lattice base for the other.
引用
收藏
页码:295 / 310
页数:16
相关论文
共 50 条
  • [21] ON TOPOLOGICAL POLYNOMIALS OF WEIGHTED GRAPHS
    Ghorbani, Modjtaba
    Hosseinzadeh, Mohammad A.
    Diudea, Mircea V.
    STUDIA UNIVERSITATIS BABES-BOLYAI CHEMIA, 2012, 57 (04): : 65 - 71
  • [22] Topological covers of complete graphs
    Gardiner, A
    Praeger, CE
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 123 : 549 - 559
  • [23] Topological graphs with no large grids
    Pach, J
    Pinchasi, R
    Sharir, M
    Tóth, G
    GRAPHS AND COMBINATORICS, 2005, 21 (03) : 355 - 364
  • [24] Weighted topological index of graphs
    Raza, Zahid
    Rather, Bilal Ahmad
    Ghorbani, Modjtaba
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [25] Topological structure of dictionary graphs
    Fuks, Henryk
    Krzeminski, Mark
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (37)
  • [26] Graphs Containing Topological H
    Ma, Jie
    Xie, Qiqin
    Yu, Xingxing
    JOURNAL OF GRAPH THEORY, 2016, 82 (02) : 121 - 153
  • [27] Resolving Topological Indices of Graphs
    Sooryanarayana, Badekara
    Chandrakala, Sogenahalli Boraiah
    Roshini, Gujar Ravichandra
    Kumar, Mallappa Vishu
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2022, 13 (03): : 201 - 226
  • [28] Relaxing planarity for topological graphs
    Pach, J
    Radoicic, R
    Tóth, G
    DISCRETE AND COMPUTATIONAL GEOMETRY, 2002, 2866 : 221 - 232
  • [29] Topological Minors in Bipartite Graphs
    Balbuena, Camino
    Cera, Martin
    Garcia-Vazquez, Pedro
    Carlos Valenzuela, Juan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (11) : 2085 - 2100
  • [30] Topological Relational Learning on Graphs
    Chen, Yuzhou
    Coskunuzer, Baris
    Gel, Yulia R.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,