Demonstration of Blind Quantum Computing

被引:332
|
作者
Barz, Stefanie [1 ,2 ]
Kashefi, Elham [3 ]
Broadbent, Anne [4 ,5 ]
Fitzsimons, Joseph F. [6 ,7 ]
Zeilinger, Anton [1 ,2 ]
Walther, Philip [1 ,2 ]
机构
[1] Univ Vienna, Fac Phys, Vienna Ctr Quantum Sci & Technol, A-1090 Vienna, Austria
[2] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-1090 Vienna, Austria
[3] Univ Edinburgh, Sch Informat, Edinburgh EH8 9AB, Midlothian, Scotland
[4] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[5] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[6] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[7] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland
基金
欧洲研究理事会; 奥地利科学基金会; 英国工程与自然科学研究理事会; 新加坡国家研究基金会; 加拿大自然科学与工程研究理事会;
关键词
MANIPULATION; COMPUTATION; ALGORITHMS; SPINS;
D O I
10.1126/science.1214707
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum computers, besides offering substantial computational speedups, are also expected to preserve the privacy of a computation. We present an experimental demonstration of blind quantum computing in which the input, computation, and output all remain unknown to the computer. We exploit the conceptual framework of measurement-based quantum computation that enables a client to delegate a computation to a quantum server. Various blind delegated computations, including one- and two-qubit gates and the Deutsch and Grover quantum algorithms, are demonstrated. The client only needs to be able to prepare and transmit individual photonic qubits. Our demonstration is crucial for unconditionally secure quantum cloud computing and might become a key ingredient for real-life applications, especially when considering the challenges of making powerful quantum computers widely available.
引用
收藏
页码:303 / 308
页数:6
相关论文
共 50 条
  • [21] Private Set Intersection with Delegated Blind Quantum Computing
    Amoretti, Michele
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [22] Verification for measurement-only blind quantum computing
    Morimae, Tomoyuki
    PHYSICAL REVIEW A, 2014, 89 (06)
  • [23] Measurement-only verifiable blind quantum computing with quantum input verification
    Morimae, Tomoyuki
    PHYSICAL REVIEW A, 2016, 94 (04)
  • [24] Verifiable Blind Quantum Computing with Trapped Ions and Single Photons
    Drmota, P.
    Nadlinger, D. P.
    Main, D.
    Nichol, B. C.
    Ainley, E. M.
    Leichtle, D.
    Mantri, A.
    Kashefi, E.
    Srinivas, R.
    Araneda, G.
    Ballance, C. J.
    Lucas, D. M.
    PHYSICAL REVIEW LETTERS, 2024, 132 (15)
  • [25] Symmetrically private information retrieval based on blind quantum computing
    Sun, Zhiwei
    Yu, Jianping
    Wang, Ping
    Xu, Lingling
    PHYSICAL REVIEW A, 2015, 91 (05)
  • [26] Demonstration of 90 000 superconductive bump connections for massive quantum computing
    Araga, Yuuki
    Nakagawa, Hiroshi
    Hashino, Masaru
    Kikuchi, Katsuya
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2023, 62 (SC)
  • [27] Verifiable Measurement-Only Blind Quantum Computing with Stabilizer Testing
    Hayashi, Masahito
    Morimae, Tomoyuki
    PHYSICAL REVIEW LETTERS, 2015, 115 (22)
  • [28] Effective Agent Quantum Private Data Query against Malicious Joint Attack with Blind Quantum Computing
    Xu, Yuguang
    Wang, Liwei
    Wang, Chaonan
    Zhu, Hongfeng
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2022, 61 (04)
  • [29] Effective Agent Quantum Private Data Query against Malicious Joint Attack with Blind Quantum Computing
    Yuguang Xu
    Liwei Wang
    Chaonan Wang
    Hongfeng Zhu
    International Journal of Theoretical Physics, 61
  • [30] Client-friendly continuous-variable blind and verifiable quantum computing
    Liu, Nana
    Demarie, Tommaso F.
    Tan, Si-Hui
    Aolita, Leandro
    Fitzsimons, Joseph F.
    PHYSICAL REVIEW A, 2019, 100 (06)