Effect of CNT structures on thermal conductivity and stability of nanofluid

被引:197
|
作者
Nasiri, A. [2 ]
Shariaty-Niasar, M. [2 ]
Rashidi, A. M. [1 ]
Khodafarin, R. [1 ]
机构
[1] RIPI, Nanotechnol Res Ctr, Tehran, Iran
[2] Univ Tehran, Coll Eng, Dept Chem Engn, Tehran, Iran
关键词
CNT structures; Nanofluid; Thermal conductivity; Stability; CARBON NANOTUBES; AQUEOUS SUSPENSIONS; HEAT-TRANSFER; ENHANCEMENT; PERFORMANCE; DISPERSION; MODEL; FLOW;
D O I
10.1016/j.ijheatmasstransfer.2011.11.004
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal conductivity and stability of carbon nanotube (CNT) structures in water-based nanofluid, as well as their dependence to temperature and time variation are of a great concern. In order to investigate such dependence, five different structures, namely SWNT (single wall CNT), DWNT (double wall CNT), FWNT (few wall CNT) and two different multiwalls were applied in this study. The experiments reveal that the maximum UV-VIS absorbance of the solution corresponds to the dispersion of SWNT in the base fluid. The results from zeta size distribution and thermal conductivity demonstrate that as the number of nanotube wall increase, both stability and thermal conductivity decrease. (C) 2011 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:1529 / 1535
页数:7
相关论文
共 50 条
  • [21] Thermal conductivity of nanofluid in nanochannels
    Michael Frank
    Dimitris Drikakis
    Nikolaos Asproulis
    Microfluidics and Nanofluidics, 2015, 19 : 1011 - 1017
  • [22] Effect of surfactants on thermal conductivity of graphene based hybrid nanofluid
    Hong, W. X.
    Sidik, N. A. C.
    Saidur, R.
    INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND GREEN TECHNOLOGY 2019, 2020, 463
  • [23] The effect of alumina/water nanofluid particle size on thermal conductivity
    Teng, Tun-Ping
    Hung, Yi-Hsuan
    Teng, Tun-Chien
    Mo, Huai-En
    Hsu, How-Gao
    APPLIED THERMAL ENGINEERING, 2010, 30 (14-15) : 2213 - 2218
  • [24] Review of interfacial layer's effect on thermal conductivity in nanofluid
    Kotia, Ankit
    Borkakoti, Sheeba
    Deval, Piyush
    Ghosh, Subrata Kumar
    HEAT AND MASS TRANSFER, 2017, 53 (06) : 2199 - 2209
  • [25] Review of interfacial layer’s effect on thermal conductivity in nanofluid
    Ankit Kotia
    Sheeba Borkakoti
    Piyush Deval
    Subrata Kumar Ghosh
    Heat and Mass Transfer, 2017, 53 : 2199 - 2209
  • [26] On the temperature effect of nanofluid thermal conductivity by molecular dynamics simulation
    Cui, Wenzheng
    Shen, Zhaojie
    Yang, Jianguo
    Wu, Shaohua
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2015, 9 (1-2): : 146 - 151
  • [27] Numerical Modeling of Nanofluid Thermal Conductivity: The Effect of Nanonetwork on Thermal Transport Behavior
    Ma, Binjian
    Banerjee, Debjoyti
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2019, 141 (12):
  • [28] Thermal Stability and Conductivity of Carbon Nanotube Nanofluid using Xanthan Gum as Surfactant
    Rashidi, Saba
    Rashmi, W.
    Abdullah, Luqman Chuah
    Khalid, M.
    Ahmadun, Fakhrul-Razi
    Faizah, M. Y.
    SAINS MALAYSIANA, 2017, 46 (07): : 1017 - 1024
  • [29] Ultrasonic preparation, stability and thermal conductivity of a capped copper-methanol nanofluid
    Graves, J. E.
    Latvyte, E.
    Greenwood, A.
    Emekwuru, N. G.
    ULTRASONICS SONOCHEMISTRY, 2019, 55 (25-31) : 25 - 31
  • [30] Stability and thermal conductivity enhancement of carbon nanotube nanofluid using gum arabic
    Rashmi, W.
    Ismail, A. F.
    Sopyan, I.
    Jameel, A. T.
    Yusof, F.
    Khalid, M.
    Mubarak, N. M.
    JOURNAL OF EXPERIMENTAL NANOSCIENCE, 2011, 6 (06) : 567 - 579