Forward likelihood-based predictive approach for space-time point processes

被引:18
|
作者
Chiodi, Marcello [1 ]
Adelfio, Giada [1 ]
机构
[1] Univ Palermo, Dipartimento Sci Stat & Matemat S Vianelli, I-90128 Palermo, Italy
关键词
likelihood function; nonparametric estimation; predictive properties; space-time point processes; KERNEL ESTIMATION; RESIDUAL ANALYSIS; PROCESS MODELS; EARTHQUAKE; DIAGNOSTICS; OCCURRENCES;
D O I
10.1002/env.1121
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Dealing with data from a space-time point process, the estimation of the conditional intensity function is a crucial issue even if a complete definition of a parametric model is not available. In particular, in case of exploratory contexts or if we want to assess the adequacy of a specific parametric model, some kind of nonparametric estimation procedure could be useful. Often, for these purposes kernel estimators are used and the estimation of the intensity function depends on the estimation of bandwidth parameters. In some fields, like for instance the seismological one, predictive properties of the estimated intensity function are pursued. Since a direct ML approach cannot be used, we propose an estimation procedure based on the subsequent increments of likelihood obtained adding an observation one at a time. Simulated results and some applications to statistical seismology are provided. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:749 / 757
页数:9
相关论文
共 50 条
  • [31] Likelihood-Based Inference for Max-Stable Processes
    Padoan, S. A.
    Ribatet, M.
    Sisson, S. A.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 263 - 277
  • [32] A pairwise likelihood-based approach for changepoint detection in multivariate time series models
    Ma, Ting Fung
    Yau, Chun Yip
    BIOMETRIKA, 2016, 103 (02) : 409 - 421
  • [33] Space-time dependence dynamics for birth-death point processes
    Comas, C.
    Mateu, J.
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (16) : 2715 - 2719
  • [34] Kernel Intensity for Space-Time Point Processes with Application to Seismological Problems
    Adelfio, Giada
    Chiodi, Marcello
    CLASSIFICATION AND MULTIVARIATE ANALYSIS FOR COMPLEX DATA STRUCTURES, 2011, : 401 - 408
  • [35] SPACE-TIME APPROACH IN THE STATISTICAL-THEORY OF NONSTATIONARY PROCESSES
    GUZEV, MA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1991, 34 (05): : 558 - 564
  • [36] Aggregation of space-time processes
    Giacomini, R
    Granger, CWJ
    JOURNAL OF ECONOMETRICS, 2004, 118 (1-2) : 7 - 26
  • [37] SPACE-TIME APPROACH TO THE DESCRIPTION OF CUMULATIVE-TYPE PROCESSES
    KALINKIN, BN
    CHERBU, AV
    SHMONIN, VL
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1980, 28 (01): : 35 - 65
  • [38] SPACE-TIME REPRESENTATION IN THE BRAIN - THE CEREBELLUM AS A PREDICTIVE SPACE-TIME METRIC TENSOR
    PELLIONISZ, A
    LLINAS, R
    NEUROSCIENCE, 1982, 7 (12) : 2949 - &
  • [39] A likelihood-based approach of uncertainty quantification using both sparse point data and interval estimates
    Yang, Lechang
    Guo, Yanling
    Kong, Zifan
    Niu, Nanpo
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-PARIS), 2019, : 192 - 197
  • [40] A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes
    Jaffa, Miran A.
    Jaffa, Ayad A.
    STATISTICS IN BIOSCIENCES, 2019, 11 (03) : 597 - 613