Forward likelihood-based predictive approach for space-time point processes

被引:18
|
作者
Chiodi, Marcello [1 ]
Adelfio, Giada [1 ]
机构
[1] Univ Palermo, Dipartimento Sci Stat & Matemat S Vianelli, I-90128 Palermo, Italy
关键词
likelihood function; nonparametric estimation; predictive properties; space-time point processes; KERNEL ESTIMATION; RESIDUAL ANALYSIS; PROCESS MODELS; EARTHQUAKE; DIAGNOSTICS; OCCURRENCES;
D O I
10.1002/env.1121
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Dealing with data from a space-time point process, the estimation of the conditional intensity function is a crucial issue even if a complete definition of a parametric model is not available. In particular, in case of exploratory contexts or if we want to assess the adequacy of a specific parametric model, some kind of nonparametric estimation procedure could be useful. Often, for these purposes kernel estimators are used and the estimation of the intensity function depends on the estimation of bandwidth parameters. In some fields, like for instance the seismological one, predictive properties of the estimated intensity function are pursued. Since a direct ML approach cannot be used, we propose an estimation procedure based on the subsequent increments of likelihood obtained adding an observation one at a time. Simulated results and some applications to statistical seismology are provided. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:749 / 757
页数:9
相关论文
共 50 条
  • [1] Blind Recognition of Linear Space-Time Block Codes: A Likelihood-Based Approach
    Choqueuse, Vincent
    Marazin, Melanie
    Collin, Ludovic
    Yao, Koffi Clement
    Burel, Gilles
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1290 - 1299
  • [2] Composite likelihood inference for space-time point processes
    Jalilian, Abdollah
    Cuevas-Pacheco, Francisco
    Xu, Ganggang
    Waagepetersen, Rasmus
    BIOMETRICS, 2025, 81 (01)
  • [3] Weighted composite likelihood-based tests for space-time separability of covariance functions
    Bevilacqua, M.
    Mateu, J.
    Porcu, E.
    Zhang, H.
    Zini, A.
    STATISTICS AND COMPUTING, 2010, 20 (03) : 283 - 293
  • [4] Weighted composite likelihood-based tests for space-time separability of covariance functions
    M. Bevilacqua
    J. Mateu
    E. Porcu
    H. Zhang
    A. Zini
    Statistics and Computing, 2010, 20 : 283 - 293
  • [5] Likelihood-based inference for multivariate space-time wrapped-Gaussian fields
    Alegria, Alfredo
    Bevilacqua, Moreno
    Porcu, Emilio
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (13) : 2583 - 2597
  • [6] Maximum likelihood-based space-time transmit diversity receiver scheme for WCDMA
    Ardestani, Majid R.
    Falahati, Abolfazl
    9TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY: TOWARD NETWORK INNOVATION BEYOND EVOLUTION, VOLS 1-3, 2007, : 2212 - +
  • [7] A nonparametric penalized likelihood approach to density estimation of space-time point patterns
    Begu, Blerta
    Panzeri, Simone
    Arnone, Eleonora
    Carey, Michelle
    Sangalli, Laura M.
    SPATIAL STATISTICS, 2024, 61
  • [8] A Composite Likelihood-Based Approach for Change-Point Detection in Spatio-Temporal Processes
    Zhao, Zifeng
    Ma, Ting Fung
    Ng, Wai Leong
    Yau, Chun Yip
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (548) : 3086 - 3100
  • [9] Space-time cluster identification in point processes
    Assuncao, Renato
    Tavares, Andrea
    Correa, Thais
    Kulldorff, Martin
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2007, 35 (01): : 9 - 25
  • [10] LIKELIHOOD-BASED INFERENCE FOR MATERN TYPE-III REPULSIVE POINT PROCESSES
    Huber, Mark L.
    Wolpert, Robert L.
    ADVANCES IN APPLIED PROBABILITY, 2009, 41 (04) : 958 - 977